Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T04:09:08.087Z Has data issue: false hasContentIssue false

True Atomic-Scale Imaging in Three Dimensions: A Review of the Rebirth of Field-Ion Microscopy

Published online by Cambridge University Press:  24 March 2017

Francois Vurpillot*
Affiliation:
Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, F-76000 Rouen, France
Frédéric Danoix
Affiliation:
Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, F-76000 Rouen, France
Matthieu Gilbert
Affiliation:
Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, F-76000 Rouen, France
Sebastian Koelling
Affiliation:
Applied Physics, Photonics and Semiconductor Nanophysics, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
Michal Dagan
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX13PH, UK
David N. Seidman
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208-3108, USA The Northwestern University Center for Atom-Probe Tomography (NUCAPT), Northwestern University, 2220 Campus Drive, Evanston, IL 60208-3108, USA
*
*Corresponding author. [email protected]
Get access

Abstract

This article reviews recent advances utilizing field-ion microscopy (FIM) to extract atomic-scale three-dimensional images of materials. This capability is not new, as the first atomic-scale reconstructions of features utilizing FIM were demonstrated decades ago. The rise of atom probe tomography, and the application of this latter technique in place of FIM has unfortunately severely limited further FIM development. Currently, the ubiquitous availability of extensive computing power makes it possible to treat and reconstruct FIM data digitally and this development allows the image sequences obtained utilizing FIM to be extremely valuable for many material science and engineering applications. This article demonstrates different applications of these capabilities, focusing on its use in physical metallurgy and semiconductor science and technology.

Type
Invited Reviews
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akré, J., Danoix, F., Leitner, H. & Auger, P. (2009). The morphology of secondary-hardening carbides in a martensitic steel at the peak hardness by 3DFIM. Ultramicroscopy 109, 518523.Google Scholar
Armstrong, D.E.J., Edmondson, P.D. & Roberts, S.G. (2013). Effects of sequential tungsten and helium ion implantation on nano-indentation hardness of tungsten. Appl Phys Lett 102, 251901.CrossRefGoogle Scholar
Bas, P., Bostel, A., Deconihout, B. & Blavette, D. (1995). A general protocol for reconstruction of 3D atom probe data. Appl Surf Sci 87/88, 298–304.Google Scholar
Beavan, L., Scanlan, R. & Seidman, D. (1971). The defect structure of depleted zones in irradiated tungsten. Acta Metall. 19, 13391350.Google Scholar
Brandon, D.G. (1964). The accurate determination of crystal orientation from field ion micrographs. J Sci Instrum. 41, 373375.CrossRefGoogle Scholar
Castell, M.R., Muller, D.A. & Voyles, P.M. (2003). Dopant mapping for the nanotechnology age. Nat Mater. 2, 129131.CrossRefGoogle ScholarPubMed
Cazottes, S., Vurpillot, F., Fnidiki, A., Lemarchand, D., Baricco, M. & Danoix, F. (2012). Nanometer scale tomographic investigation of fine scale precipitates in a CuFeNi granular system by three-dimensional field ion microscopy. Microsc Microanal 18(5), 11291134.CrossRefGoogle Scholar
Cerezo, A., Hetherington, M., Hyde, J., Miller, M. & Smith, G. (1992). Visualisation of three-dimensional microstructures. Surf Sci 280, 471480.Google Scholar
Chen, Y.C. & Seidman, D.N. (1971). Atomic resolution of a field ion microscope. Surf Sci 26, 6184.CrossRefGoogle Scholar
Dagan, M., Gault, B., Smith, G., Bagot, P. & Moody, M. (2016). Automated “atom-by-atom” 3D reconstruction of field ion microscopy data. Microsc Microanal, in press.Google Scholar
Dagan, M., Hanna, L.R., Xu, A., Roberts, S.G., Smith, G.D., Gault, B., Edmonson, P.D, Bagot, P.A.J. & Moody, M.P. (2015). Imaging of radiation damage using complementary field ion microscopy and atom probe tomography. Ultramicroscopy 159, 387394.Google Scholar
Danoix, F., Epicier, T., Vurpillot, F. & Blavette, D. (2012). Atomic-scale imaging and analysis of single layer GP zones in a model steel. J Mater Sci 47(3), 15671571.Google Scholar
Drechsler, M. & Wolf, P. (1958). Zur Analyse von Feldionenmikrosop-Aufnahmen mit atomarer Auflösung. In the 4 th International Conference on Electron Microscopy, Berlin, September 10–17, p. 823.Google Scholar
Fortes, M.A., Smith, D.A. & Ralph, B. (1968). Interpretation of field-ion micrographs – Contrast from perfect dislocation loops. Philos Mag 17, 169176.Google Scholar
Gault, B., Moody, P.M., Cairney, J. & Ringer, S. (2012). Atom Probe Microscopy. London: Springer.CrossRefGoogle Scholar
Göbel, E.O., Jung, H., Kuhl, J. & Ploog, K. (1983). Recombination enhancement due to carrier localization in quantum well structures. Phys Rev Lett 51, 15881591.CrossRefGoogle Scholar
Gomer, R. (1961). Field Emission and Field Ionization. Cambridge: Harvard University Press.Google Scholar
Koelling, S., Richard, O., Bender, H., Uematsu, M., Schulze, A., Zschaetzsch, G., Gilbert, M. & Vanderworst, W. (2013). Direct imaging of 3D atomic-scale dopant-defect clustering processes in ion-implanted silicon. Nano Lett 13(6), 24582462.Google Scholar
Larson, D., Prosa, T., Ulfig, R., Geiser, B. & Kelly, T. (2013). Local Electrode Atom Probe Tomography: A User’s Guide. New York: Springer.CrossRefGoogle Scholar
Lefebvre-Ulrikson, W., Vurpillot, F. & Sauvage, X. (2016). Atom Probe Tomography : Put Theory Into practice. London: Elsevier Academic Press.Google Scholar
Loberg, B. & Norden, H. (1973). Regular defect structures in high angle grain boundaries. Acta Metall 21, 213218.CrossRefGoogle Scholar
Miller, M. & Forbes, R. (2014). Atom-Probe Tomography: The Local Electrode Atom Probe. New York: Springer.Google Scholar
Müller, E. (1965). Field ion microscopy. Science 149, 591601.Google Scholar
Müller, E.W. & Bahadur, K. (1956). Field ionization of gases at a metal surface and the resolution of the field ion microscope. Phys Rev 102, 624631.Google Scholar
Rademacher, T., Al-Kassab, T. & Kirchheim, R. (2009). The influence of elastic strain on the early stages of decomposition in Cu–1.7 at% Fe. Ultramicroscopy 109, 524529.Google Scholar
Scanlan, R.M., Styris, D.L. & Seidman, D.N. (1974). In-situ field ion microscope study of irradiated tungsten.2. Analysis and interpretation. Philos Mag 23, 14391457.Google Scholar
Schmid, T.E. & Balluffi, R.-W. (1971). Formation and migration of artifact vacancies induced on gold surfaces by neon field ion microscopy. Surf Sci 28, 3236.Google Scholar
Seidman, D.N., Current, M.I., Pramanik, D. & Wei, C.-Y. (1981). Direct observations of the primary state of radiation damage of ion-irradiated tungsten and platinum. Nucl Instrum Methods 182–183, 477481.Google Scholar
Semboshi, S., Al-Kassab, T., Gemma, R. & Kirchheim, R. (2009). Microstructural evolution of Cu-1 at% Ti alloy aged in a hydrogen atmosphere and its relation with the electrical conductivity. Ultramicroscopy 109, 593598.Google Scholar
Smith, D.A., Fortes, M.A., Kelly, A. & Ralph, B. (1968). Contrast from stacking faults and partial dislocations in field-ion microscope. Philos Mag 17, 10651077.CrossRefGoogle Scholar
Speicher, C.A., Pimbley, W.T., Attardo, M.J., Galligan, J.M. & Brenner, S.S. (1966). Observation of vacancies in field-ion microscopy. Phys Lett 23, 194.CrossRefGoogle Scholar
Stiller, K. & Andrén, H.-O. (1982). Faulty field evaporation at di-vacancies in {222} tungsten. Surf Sci Lett 114, 5761.Google Scholar
Van Tendeloo, G., Van Dyck, D. & Pennycook, S.J. (2012). Handbook of Nanoscopy, Volume 2. Weinheim, Germany: Wiley-VCH.CrossRefGoogle Scholar
Vurpillot, F., Gilbert, M. & Deconihout, B. (2007). Towards the three-dimensional field ion microscope. Surf Interface Anal 39, 273277.Google Scholar
Vurpillot, F., Gruber, M., Duguay, S., Cadel, E. & Deconihout, B. (2009). Modeling artifacts in the analysis of test semiconductor structures in atom probe tomography. AIP Conf Proc 1173, 175.Google Scholar
Wiederrecht, G. (2010). Handbook of Nanoscale Optics and Electronics. Amsterdam, The Netherlands: Elsevier – Academic Press.Google Scholar
Xu, R., Chen, C.-C., Wu, L., Scott, M.C., Theis, W., Ophus, C., Bartels, B., Yang, Y., Ramezani-Dakhel, H., Sawaya, M.R., Heinz, H., Marks, L.D., Ercius, P. & Miao, J. (2015). Three-dimensional coordinates of individual atoms in materials revealed by electron tomography. Nat Mater 14, 10991103.Google Scholar