Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T06:47:08.009Z Has data issue: false hasContentIssue false

Trichomonads under Microscopy

Published online by Cambridge University Press:  01 October 2004

Marlene Benchimol
Affiliation:
Santa Ursula University, Rua Jornalista Orlando Dantas, 59, CEP 222-31-010, Botafogo, Rio de Janeiro, RJ, Brazil
Get access

Abstract

Trichomonads are flagellate protists, and among them Trichomonas vaginalis and Tritrichomonas foetus are the most studied because they are parasites of the urogenital tract of humans and cattle, respectively. Microscopy provides new insights into the cell biology and morphology of these parasites, and thus allows better understanding of the main aspects of their physiology. Here, we review the ultrastructure of T. foetus and T. vaginalis, stressing the participation of the axostyle in the process of cell division and showing that the pseudocyst may be a new form in the trichomonad cell cycle and not simply a degenerative form. Other organelles, such as the Golgi and hydrogenosomes, are also reviewed. The virus present in trichomonads is discussed.

Type
Feature Articles
Copyright
© 2004 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Affonso, A.L., Almeida, J.C., & Benchimol, M. (1997). Partial characterization of cytoplasmic compartments involved in the endocytic process of Tritrichomonas foetus. Eur J Cell Biol 72, 247256.Google Scholar
Affonso, A.L., Benchimol, M., Ribeiro, K.C., Lins, U., & De Souza, W. (1994). Further studies on the endocytic activity of Tritrichomonas foetus. Parasitol Res 80, 403413.Google Scholar
Alderete, J.F., Demes, P., Gombosova, A., Valent, A., Janoska, M., Fabusova, A., Kasmala, L., Garza, G.E., & Metcalfe, E.C. (1987). Phenotypes and protein/epitope phenotypic variation among fresh isolates of Trichomonas vaginalis. Infect Immun 55, 10371041.Google Scholar
Alderete, J.F. & Garza, G.E. (1988). Identification and properties of Trichomonas vaginalis proteins involved in cytoadherence. Infect Immun 56, 2833.Google Scholar
Almeida, J.A., Souza, W., Benchimol, M., & Okorokov, L. (2003). The Ca2+ sequestering in the early-branching amitochondriate protozoan Tritrichomonas foetus: The important role of the Golgi complex and its Ca2+-ATPase. Biochim Biophys Acta Biomembr (USA) 1615, 6068.Google Scholar
Arroyo, R., Engbring, J., & Alderete, J.F. (1992). Molecular basis of host epithelial recognition by Trichomonas vaginalis. Mol Microbiol 6, 853862.Google Scholar
Benchimol, M. (1999a). Hydrogenosome autophagy: An ultrastructural and cytochemical study. Biol Cell 91, 165174.Google Scholar
Benchimol, M. (1999b). The hydrogenosome. Acta Microsc 8, 122.Google Scholar
Benchimol, M. (2000). Ultrastructural characterization of the isolated hydrogenosome in Tritrichomonas foetus. Tissue Cell 32, 518526.Google Scholar
Benchimol, M. (2001). Hydrogenosome morphological variation induced by fibronectin and other drugs in Trichomonas vaginalis and Tritrichomonas foetus. Parasitol Res 87, 215222.Google Scholar
Benchimol, M., Almeida, J.C.A., & De Souza, W. (1996a). Further studies on the organization of the hydrogenosome in Tritrichomonas foetus. Tissue Cell 28, 287299.Google Scholar
Benchimol, M., Batista, C., & De Souza, W. (1990). Fibronectin- and laminin-mediated endocytic activity in the parasitic protozoa Trichomonas vaginalis and Tritrichomonas foetus. J Submicrosc Cytol Pathol 22, 3945.Google Scholar
Benchimol, M., Chang, T.-H., & Alderete, J.F. (2002a). Trichomonas vaginalis: Observation of coexistence of multiple viruses in the same isolate. FEMS Microbiol Lett 215, 197201.Google Scholar
Benchimol, M., Chang, T.-H., & Alderete, J.F. (2002b). Ultrastructural localization of VLPs in trichomonads. Tissue Cell 266, 110.Google Scholar
Benchimol, M., Cunha e Silva, N.L., Elias, C.A., & De Souza, W. (1986). Tritrichomonas foetus: Ultrastructure and cytochemistry of endocytosis. Exp Parasitol 62, 405415.Google Scholar
Benchimol, M. & De Souza, W. (1983). Fine structure and cytochemistry of the hydrogenosome of Tritrichomonas foetus. J Protozool 30, 422425.Google Scholar
Benchimol, M. & De Souza, W. (1987). Structural analysis of the cytoskeleton of Tritrichomonas foetus. J Submicrosc Cytol 19, 139147.Google Scholar
Benchimol, M. & De Souza, W. (1995). Carbohydrate involvement in the association of a prokaryotic cell with Trichomonas vaginalis and Tritrichomonas foetus. Parasitol Res 81, 459464.Google Scholar
Benchimol, M., Diniz, J.A.P., & Ribeiro, K. (2000). The fine structure of the axostyle and its associations with organelles in trichomonads. Tissue Cell 32, 178187.Google Scholar
Benchimol, M., Elias, C.A., & De Souza, W. (1981). Specializations in the flagellar membrane of Tritrichomonas foetus. J Parasitol 67, 174178.Google Scholar
Benchimol, M., Elias, C.A., & De Souza, W. (1982). Tritrichomonas foetus: Ultrastructural localization of basic proteins and carbohydrates. Exp Parasitol 54, 135144.Google Scholar
Benchimol, M., Johnson, P.J., & De Souza, W. (1996b). Morphogenesis of the hydrogenosome: An ultrastructural study. Bio Cell 87, 197205.Google Scholar
Benchimol, M., Kachar, B., & De Souza, W. (1992). Surface domains in the pathogenic protozoan Tritrichomonas foetus. J Protozool 39, 480484.Google Scholar
Benchimol, M., Kachar, B., & De Souza, W. (1993). The structural organization of the pathogenic protozoan Tritrichomonas foetus as seen in replicas of quick frozen, freeze-fracture and deep etched cells. Biol Cell 77, 289295.Google Scholar
Benchimol, M., Leal, D., Mattos, A., & Diniz, J.A.P. (1997). Fine structure of Trichomonas gallinae. BioCell 21, 4758.Google Scholar
Benchimol, M., Monteiro, S.P., Chang, T.-H., & Alderete, J.F. (2002c). Virus in trichomonads—An ultrastructural study. Parasitol Int 51, 293298.Google Scholar
Benchimol, M., Ribeiro, K., Mariante, R.M., & Alderete, J.F. (2001). Structure and division of the Golgi complex in Trichomonas vaginalis and Trichomonas foetus. Eur J Cell Biol 80, 593607.Google Scholar
Bessarab, I.N., Liu, H.W., Ip, C., & Tai, J.H. (2000). The complete cDNA sequence of a type II Trichomonas vaginalis virus. Virology 267, 350359.Google Scholar
Boggild, A.K., Sundermann, C.A., & Estridge, B.H. (2002a). Post-translational glutamylation and tyrosination in tubulin of tritrichomonas and the diplomonad Giardia intestinalis. Parasitol Res 88, 5862.Google Scholar
Boggild, A.K., Sundermann, C.A., & Estridge, B.H. (2002b). Localization of post-translationally modified alpha-tubulin and pseudocyst formation in tritrichomonads. Parasitol Res 88, 468474.Google Scholar
Bricheux, G., Coffe, G., Bayle, D., & Brugerolle, G. (1997). Molecular cloning of actin genes in Trichomonas vaginalis and phylogeny inferred from actin sequences. FEMS Microbiol Lett 153, 205213.Google Scholar
Bricheux, G., Coffe, G., Bayle, D., & Brugerolle, G. (2000). Characterization, cloning and immunolocalization of a coronin homologue in Trichomonas vaginalis. Eur J Cell Biol 79, 413422.Google Scholar
Bricheux, G., Coffe, G., Pradel, N., & Brugerolle, G. (1998). Evidence for an uncommon α-actinin protein in Trichomonas vaginalis. Mol Biochem Parasitol 95, 241249.Google Scholar
Brugerolle, G. (1975). Étude de la cryptopleuromitose et de la morphogenèse de división chez plusieurs Genres de trichomonadines primitives. Protistologica 4, 457468.Google Scholar
Brugerolle, G., Bricheux, G., & Coffe, G. (1996). Actin cytoskeleton demonstration in Trichomonas vaginalis and in other trichomonads. BioCell 88, 2936.Google Scholar
Brugerolle, G., Bricheux, G., & Coffe, G. (2000). Centrin protein and genes in Trichomonas vaginalis and close relatives. J Euk Microbiol 47, 129138.Google Scholar
Cavalier-Smith, T. & Chao, E.E. (1996). Molecular phylogeny of the free-living archeozoan Trepomonas agilis and the nature of the first eukaryote. J Mol Evol 43, 551562.Google Scholar
Champney, W.S., Curtis, S.K., & Samuels, R. (1995). Cytopathology and release of an RNA virus from a strain of Trichomonas vaginalis. Int J Parasitol 25, 14631471.Google Scholar
Chapman, A., Hann, A.O.C., Linstead, D., & Lloyd, D. (1985). Energy dispersive X-ray microanalysis of membrane associated inclusion in hydrogenosomes isolated from Trichomonas vaginalis. J Gen Microbiol 131, 29332939.Google Scholar
Clemens, D.L. & Johnson, P.J. (2000). Failure to detect DNA in hydrogenosomes of Trichomonas vaginalis by nick translation and immunomicroscopy. Mol Biochem Parasitol 106, 307313.Google Scholar
Delgado-Viscogliosi, P., Brugerolle, G., & Viscogliosi, E. (1996). Tubulin post-translational modifications in the primitive protist Trichomonas vaginalis. Cell Motil Cytoskeleton 33, 288297.Google Scholar
Demirezen, S. (2001). Phagocytosis of rod-shaped bacteria and cocci by Trichomonas vaginalis: Light microscopic observations. Acta Cytol 45, 10881089.Google Scholar
De Souza, W. (2002). Special organelles of some pathogenic protozoa. Parasitol Res 88, 10131025.Google Scholar
Díaz, J.A.M. & De Souza, W. (1997). Purification and biochemical characterization of the hydrogenosomes of the flagellate protist Tritrichomonas foetus. Eur J Cell Biol 74, 8591.Google Scholar
Díaz, J.A.M., Monteiro-Leal, L.H., & De Souza, W. (1996). Tritrichomonas foetus: Isolation and characterization of the Golgi complex. Exp Parasitol 83, 174183.Google Scholar
Embley, T.M. & Hirt, R.P. (1998). Early branching eukaryotes? Curr Opin Genet Dev 8, 624629.Google Scholar
Engbring, J.A., O'Brien, J., & Alderete, J.F. (1996). Trichomonas vaginalis adhesin proteins display molecular mimicry to metabolic enzymes. Adv Exp Med Biol 408, 207223.Google Scholar
Francioli, P., Shio, H., Roberts, R.B., & Muller, M. (1983). Phagocytosis and killing of Neisseria gonorrhoeae by Trichomonas vaginalis. J Infect Dis 147, 8794.Google Scholar
Furtado, M.B. & Benchimol, M. (1998). Observation of membrane fusion in the interaction of Trichomonas vaginalis with human epithelial cells. Parasitol Res 84, 213220.Google Scholar
Gómez-Conde, E., Mena-Lopez, R., Hernandez-Jauregui, P., Gonzalez-Camacho, M., & Arroyo, R. (2000). Trichomonas vaginalis: Chromatin and mitotic spindle during mitosis. Exp Parasitol 96, 130138.Google Scholar
González-Robles, A., Lazaro-Haller, A., Espinosa-Cantellano, M., Anaya-Velazquez, F., & Martinez-Palomo, A. (1995). Trichomonas vaginalis: Ultrastructural bases of the cytophatic effect. J Euk Microbiol 42, 641651.Google Scholar
Granger, B.L., Warwood, S.J., Benchimol, M., & De Souza, W. (2000). Transient invagiantion of flagella by Tritrichomonas foetus. Parasitol Res 86, 699709.Google Scholar
Honigberg, M.B. & Brugerolle, G. (1990). Structure. In Trichomonads Parasitic in Human, Honigberg, B.M. (Ed.), pp. 535. New York: Springer-Verlag.
Khoshnan, A. & Alderete, J.F. (1993). Multiple double-stranded RNA segments are associated with virus particles infecting Trichomonas vaginalis. J Virol 67, 69506955.Google Scholar
Land, K.M., Clemens, D.L., & Johnson, P.J. (2001). Loss of multiple hydrogenosomal proteins associated with organelle metabolism and high-level drug resistance in trichomonads. Exp Parasitol 97, 102110.Google Scholar
Lehker, M.W. & Alderete, J.F. (1999). Resolution of six chromosomes of Trichomonas vaginalis and conservation of size and number among isolates. J Parasitol 85, 976979.Google Scholar
Lindmark, D.G. & Müller, M. (1973). Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate, Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem 248, 77247728.Google Scholar
Lopes, L.C., Ribeiro, K.C., & Benchimol, M. (2001). Immunolocalization of tubulin isoforms in the protists Tritrichomonas foetus and Trichomonas vaginalis. Histochem Cell Biol 116, 1729.Google Scholar
Madeiro da Costa, R.F. & Benchimol, B. (2004). The effect of drugs in T. foetus. Parasitol Res 92, 159170.Google Scholar
Mattos, A., Solé-Cava, A.M., De Carli, G., & Benchimol, M. (1997). Fine structure and isozymic characterization of trichomonad protozoa. Parasitol Res 83, 290295.Google Scholar
Monteiro-Leal, L.H., Farina, M., Benchimol, M., Kachar, B., & De Souza, W. (1995). Coordinated flagellar and ciliary beating in the protozoon Tritrichomonas foetus. J Euk Microbiol 42, 709714.Google Scholar
Monteiro-Leal, L.H., Farina, M., & De Souza, W. (1996). Free movement of Tritrichomonas foetus in a liquid medium: A video-microscopy study. Cell Motil Cytoskeleton 34, 206214.Google Scholar
Moody, D. & Lozanoff, S. (1997). SURFdriver, a practical computer program for generating three-dimensional models of anatomical structures. Paper presented at the 14th Annual Meeting of the American Association of Clinical Anatomists, July 8–11, Honolulu, Hawaii.
Muller, M. (1973). Biochemical cytology of trichomonad flagellates. I. Subcellular localization of hydrolases, dehydrogenases, and catalase in Tritrichomonas foetus. J Cell Biol 57, 453474.Google Scholar
Müller, M. (1993). The hydrogenosome. J Gen Microb 139, 28792889.Google Scholar
Pelletier, L., Stern, C.A., Pypaert, M., Sheff, D., Ngo, H.M., He, C.Y., Hu, K., Toomre, D., Coppens, I., Roos, D., Joiner, K.A., & Warren, G. (2002). Golgi biogenesis in Toxoplasma gondii. Nature 418, 548552.Google Scholar
Pozzan, T., Rosario, R., Volpe, P., & Meldolesi, J. (1994). Molecular and cellular physiology of intracellular calcium stores. Physiol Rev 74, 595635.Google Scholar
Queiroz, R.C.B., Santos, L.M.S., Benchimol, B., & De Souza, W. (1991). Cytochemical localization of enzyme markers in Tritrichomonas foetus. Parasitol Res 77, 561566.Google Scholar
Reis, I.A., Martinez, M.P., Yarlett, N., Johnson, P.J., Silva-Filho, F., & Vannier-Santos, M.A. (1999). Inhibition of polyamine synthesis arrests trichomonad growth and induces destruction of hydrogenosomes. Antimicrobiol Agents Chemother 43, 19191923.Google Scholar
Ribeiro, K.C., Benchimol, M., & Farina, M. (2001). Contribution of cryofixation and freeze-substitution to analytical microscopy: A study of Tritrichomonas foetus hydrogenosomes. Microsc Res Tech 53, 8792.Google Scholar
Ribeiro, K.C., Lopes, L.C., Mariante, R.M., & Benchimol, M. (2002a). Nucleus behavior during the closed mitosis in Tritrichomonas foetus. Biol Cell 94, 289301.Google Scholar
Ribeiro, K.C., Monteiro-Leal, L.H., & Benchimol, M. (2000). Contributions of the axostyle and flagella to the closed mitosis of Tritrichomonas foetus and Trichomonas vaginalis. J Euk Microbiol 47, 481492.Google Scholar
Ribeiro, K.C., Pereira-Neves, A.N., & Benchimol, M. (2002b). The mitotic spindle and associated membranes in the closed mitosis of trichomonads. BioCell 94, 157172.Google Scholar
Ribeiro, K.C., Vetö, A.C., & Benchimol, M. (2002c). Tritrichomonas foetus: Induced division synchrony by hydroxyurea. Parasitol Res 88, 627631.Google Scholar
Schneider, A., Plessmann, U., Felleisen, R., & Weber, A. (1999). Alpha-tubulins of Tritrichomonas mobilensis are encoded by multiple genes and are not post-translationally tyrosinated. Parasitol Res 85, 246248.Google Scholar
Shaia, C.I., Voyich, J., Gillis, S.J., Singh, B.N., & Burgess, D. (1998). Purification and expression of the Tf190 adhesin in Tritrichomonas foetus. Infect Immun 66, 11001105.Google Scholar
Tachezy, J., Kulda, J., Bahniková, I., Suchan, P., Rázga, J., & Schrével, J. (1996). Tritrichomonas foetus: Iron acquisition from lactoferrin and transferrin. Exp Parasitol 83, 216228.Google Scholar
Tachezy, J., Tachezy, R., Hampl, V., Sedinova, M., Vanacova, S., Vrlik, M., Vanranst, M., Flegr, J., & Kulda, J. (2002). Cattle pathogen Tritrichomonas foetus (Riedmuller, 1928) and pig commensal Tritrichomonas suis (Gruby & Delafond, 1843) belong to the same species. J Euk Microbiol 49, 154163.Google Scholar
Turner, G. & Müller, M. (1983). Failure to detect extranuclear DNA in Trichomonas vaginalis and Tritrichomonas foetus. J Parasitol 69, 234236.Google Scholar
Viscogliosi, E. & Brugerolle, G. (1993). Cytoskeleton in trichomonads. II. Immunological and biochemical characterization of the preaxostylar fibres and undulating membranes in the genus Tritrichomonas. Eur J Protistol 29, 381389.Google Scholar
Viscogliosi, E. & Brugerolle, G. (1994a). Cytoskeleton in trichomonads. III. Study of the morphogenesis during division by using monoclonal antibodies against cytoskeletal structures. Eur J Protistol 30, 129138.Google Scholar
Viscogliosi, E. & Brugerolle, G. (1994b). Striated fibers in Trichomonads: Costa proteins represent a new class of proteins forming striated roots. Cell Motil Cytoskeleton 29, 8293.Google Scholar
Wang, A. & Wang, C.C. (1986). The double-stranded RNA in Trichomonas vaginalis may originate from virus-like particles. Proc Natl Acad Sci USA 83, 79567960.Google Scholar
World Health Organization. (1995). An overview of selected curable sexually transmitted diseases. In Global Program on AIDS, pp. 227. Geneva, Switzerland: World Health Organization.
Xu, W.D., Lun, Z.R., & Gajadhar, A. (1998). Chromosome numbers of Tritrichomonas foetus and Tritrichomonas suis. Vet Parasitol 78, 247251.Google Scholar
Young, J.S., Suzanne, M.R., Philip, M.G., & Kinnamon, C.J. (1987). Three-dimensional reconstructions from serial micrographs using the IBM PC. J Electron Microsc Tech 6, 207217.Google Scholar
Zuo, Y., Riley, E.D., & Krieger, N.J. (1999). Flagellar duplication and migration during the Trichomonas vaginalis cell cycle. J Parasitol 85, 203207.Google Scholar