Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T18:10:45.910Z Has data issue: false hasContentIssue false

A Transmission Electron Microscopy Study of the Effect of Interfaces on Bubble Formation in He-Implanted Cu-Nb Multilayers

Published online by Cambridge University Press:  18 January 2012

D. Bhattacharyya*
Affiliation:
Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
M.J. Demkowicz
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Y.-Q. Wang
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
R.E. Baumer
Affiliation:
Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
M. Nastasi
Affiliation:
Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
A. Misra
Affiliation:
Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
*
Corresponding author. E-mail: [email protected], [email protected]
Get access

Abstract

Magnetron sputtered thin films of Cu, Nb, and Cu-Nb multilayers with 2.5 and 5 nm nominal layer thickness were deposited on Si and implanted with 4He+ and 3He+ ions. Secondary ion mass spectroscopy and nuclear reaction analysis, respectively, were used to measure the 4He+ and 3He+ concentration profile with depth inside the films. Cross-sectional transmission electron microscopy was used to characterize the helium bubbles. Analysis of the contrast from helium bubbles in defocused transmission electron microscope images showed a minimum bubble diameter of 1.25 nm. While pure Cu and Nb films showed bubble contrast over the entire range of helium implantation, the multilayers exhibited bubbles only above a critical He concentration that increased almost linearly with decreasing layer thickness. The work shows that large amounts of helium can be trapped at incoherent interfaces in the form of stable, nanometer-size bubbles.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bush, S.H. (1974). Structural materials for nuclear power plants. J Test Eval 2(6), 435462.CrossRefGoogle Scholar
Demkowicz, M.J., Anderoglu, O., Zhang, X. & Misra, A. (2011). The influence of S3 twin boundaries on the formation of radiation-induced defect clusters in nanotwinned Cu. J Mater Res 26(14), 16661675.CrossRefGoogle Scholar
Demkowicz, M.J., Bhattacharyya, D., Usov, I., Wang, Y.Q., Nastasi, M. & Misra, A. (2010). The effect of excess atomic volume on He bubble formation at fcc-bcc interfaces. Appl Phys Lett 97(16), 161903.CrossRefGoogle Scholar
Demkowicz, M.J., Hoagland, R.G. & Hirth, J.P. (2008). Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. Phys Rev Lett 100(13), 136102.CrossRefGoogle ScholarPubMed
Farrell, K. (1980). Experimental effects of helium on cavity formation during irradiation—A review. Radiat Eff Defect Solids 53(3), 175194.CrossRefGoogle Scholar
Hashimoto, N., Wakai, E. & Robertson, J.P. (1999). Damage structure in austenitic stainless steel 316LN irradiated at low temperature in the HFIR. J Electron Microsc (Tokyo) 48(5), 575580.CrossRefGoogle Scholar
Hochbauer, T., Misra, A., Hattar, K. & Hoagland, R.G. (2005). Influence of interfaces in the storage of ion-implanted He in multilayered metallic composites. J Appl Phys 98, 12356.CrossRefGoogle Scholar
Jenkins, M.L. & Kirk, M.A. (2001). Characterization of Radiation Damage by Transmission Electron Microscopy. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Kashinath, A. & Demkowicz, M.J. (2011). A predictive interatomic potential for He in Cu and Nb. Model Simul Mater Sci 19(3), 035007.CrossRefGoogle Scholar
Kocìk, J., Keilov, E., Cìzek, J. & Prochzka, I. (2002). TEM and PAS study of neutron irradiated VVER-type RPV steels. J Nucl Mater 303(1), 5264.CrossRefGoogle Scholar
Kurdjumov, G.V. & Sachs, G. (1930). Über den Mechanismus der Stahlhärtung. Z Phys A 64(5-6), 325343.CrossRefGoogle Scholar
Laakmann, J., Jung, P. & Uelhoff, W. (1987). Solubility of helium in gold. Acta Metall 35(8), 20632069.CrossRefGoogle Scholar
Mansur, L.K. & Lee, E.H. (1991). Theoretical basis for unified analysis of experimental-data and design of swelling-resistant alloys. J Nucl Mater 179, 105110.CrossRefGoogle Scholar
Maziasz, P.J. (1984). Swelling and swelling resistance possibilities of austenitic stainless steels in fusion reactors. J Nucl Mater 122(1-3), 472486.CrossRefGoogle Scholar
Odette, G.R., Alinger, M.J. & Wirth, B.D. (2008). Recent developments in irradiation-resistant steels. Ann Rev Mater Res 38, 471503.CrossRefGoogle Scholar
Odette, G.R. & Hoelzer, D.T. (2010). Irradiation-tolerant nanostructured ferritic alloys: Transforming helium from a liability to an asset. JOM 62(9), 8492.CrossRefGoogle Scholar
Rau, R.C. & Ladd, R.L. (1969). Radiation damage in vanadium. J Nucl Mater 30(3), 297302.CrossRefGoogle Scholar
Rodriguez, P., Krishnan, R. & Sundaram, C.V. (1984). Radiation effects in nuclear reactor materials—Correlation with structure. Bull Mater Sci 6(2), 339367.CrossRefGoogle Scholar
Ruhle, M. & Wilkens, M. (1975). Defocusing contrast of cavities I. Theory. Cryst Latt Def 6, 129140.Google Scholar
Scherzer, B.M.U., Ehrenberg, J. & Behrisch, R. (1983). High-fluence He-implantation in Ni trapping, re-emission, and surface modification. Radiat Eff Def Solids 78(1), 417426.CrossRefGoogle Scholar
Schroeder, H. (1983). High temperature embrittlement of metals by helium. Radiat Eff Def Solids 78(1), 297314.CrossRefGoogle Scholar
Trinkaus, H. (1983). Energetics and formation kinetics of helium bubbles in metals. Radiat Eff Def Solids 78(1), 189211.CrossRefGoogle Scholar
Was, G.S. (2007). Irradiation-Induced Voids and Bubbles. Fundamentals of Radiation Materials Science. Berlin: Springer-Verlag.Google Scholar
Zinkle, S.J. (1987). Microstructure and properties of copper alloys following 14-MeV neutron irradiation. J Nucl Mater 150(2), 140158.CrossRefGoogle Scholar
Supplementary material: PDF

Bhattacharyya et al. supplementary material

Supplementary figures

Download Bhattacharyya et al. supplementary material(PDF)
PDF 103.1 KB