No CrossRef data available.
Article contents
Toward Measuring In-Vitro Single Molecule Force Fields Using a Scanning Force Microscope
Published online by Cambridge University Press: 02 July 2020
Extract
The interaction of surfaces with their surroundings can be described as arising from force fields generated by molecules at the surface of interest. This statement is true for electrostatic interactions of proteins on cell membranes as well as steric interactions of macromolecules on polymer surfaces. To better understand these systems and ultimately to design superior materials, it is necessary to make direct measurements of these near-surface molecular scale force fields. Scanning force microscopy (SFM) holds some promise in the endeavor to make surface force measurements in a full three dimensional submolecularly resolved space. In-vitro measurements present a problem in that the force fields tend to be very short ranged. This necessitates placing the SFM probe very near the surface in order to measure the fields. The ubiquitous van der Waals attraction tends to induce an instability in the SFM instrument under these conditions leading to a non-equilibrium state. We have carefully examined this state of affairs and found that it is essential to use a substantially more sophisticated method to analyze SFM data than is commonly performed.
- Type
- Biomaterials
- Information
- Microscopy and Microanalysis , Volume 6 , Issue S2: Proceedings: Microscopy & Microanalysis 2000, Microscopy Society of America 58th Annual Meeting, Microbeam Analysis Society 34th Annual Meeting, Microscopical Society of Canada/Societe de Microscopie de Canada 27th Annual Meeting, Philadelphia, Pennsylvania August 13-17, 2000 , August 2000 , pp. 970 - 971
- Copyright
- Copyright © Microscopy Society of America