Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T18:13:09.726Z Has data issue: false hasContentIssue false

Tomographic Spectral Imaging with Multivariate Statistical Analysis: Comprehensive 3D Microanalysis

Published online by Cambridge University Press:  24 January 2006

Paul G. Kotula
Affiliation:
Sandia National Laboratories, Materials Characterization Department, P.O. Box 5800, MS0886, Albuquerque, NM 87185-0886, USA
Michael R. Keenan
Affiliation:
Sandia National Laboratories, Materials Characterization Department, P.O. Box 5800, MS0886, Albuquerque, NM 87185-0886, USA
Joseph R. Michael
Affiliation:
Sandia National Laboratories, Materials Characterization Department, P.O. Box 5800, MS0886, Albuquerque, NM 87185-0886, USA
Get access

Abstract

A comprehensive three-dimensional (3D) microanalysis procedure using a combined scanning electron microscope (SEM)/focused ion beam (FIB) system equipped with an energy-dispersive X-ray spectrometer (EDS) has been developed. The FIB system was used first to prepare a site-specific region for X-ray microanalysis followed by the acquisition of an electron-beam generated X-ray spectral image. A small section of material was then removed by the FIB, followed by the acquisition of another X-ray spectral image. This serial sectioning procedure was repeated 10–12 times to sample a volume of material. The series of two-spatial-dimension spectral images were then concatenated into a single data set consisting of a series of volume elements or voxels each with an entire X-ray spectrum. This four-dimensional (three real space and one spectral dimension) spectral image was then comprehensively analyzed with Sandia's automated X-ray spectral image analysis software. This technique was applied to a simple Cu-Ag eutectic and a more complicated localized corrosion study where the powerful site-specific comprehensive analysis capability of tomographic spectral imaging (TSI) combined with multivariate statistical analysis is demonstrated.

Type
50 YEARS OF X-RAY MAPPING
Copyright
2006 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cosslett, V.E. & Duncumb, P.D. (1956). Micro-analysis by flying-spot X-ray method. Nature 177, 11721173.Google Scholar
Denk, W. & Horstmann, H. (2004). Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PloS Biol 2 [11] (e329), 19001909.Google Scholar
Dunn, D.N. & Hull, R. (1999). Reconstruction of three-dimensional chemistry and geometry using focused ion beam microscopy. Appl Phys Lett 75, 34143416.Google Scholar
Dunn, D.N., Shiflet, G.J., & Hull, R. (2002). Quantitative three-dimensional reconstruction of geometrically complex structures with nanoscale resolution. Rev Sci Instrum 73, 330334.Google Scholar
Hull, R., Dunn, D., & Kubis, A. (2001). Nanoscale tomographic imaging using focused ion beam sputtering, secondary electron imaging and secondary ion mass spectrometry. Microsc Microanal 7 (Suppl. 2) 934935.Google Scholar
Keenan, M.R. & Kotula, P.G. (2003). Apparatus and System for Multivariate Spectral Analysis, US Patent #6,584,413.
Keenan, M.R. & Kotula, P.G. (2004a). Accounting noise in the multivariate statistical analysis of TOF-SIMS data. Surf Int Anal 36, 203212.Google Scholar
Keenan, M.R. & Kotula, P.G. (2004b). Method of Multivariate Spectral Analysis. US Patent #6,675,106.
Keenan, M.R. & Kotula, P.G. (2004c). Multivariate statistical analysis of EEL-spectral images. Microsc Microanal 10 (Suppl. 2 Proceedings), 874875.Google Scholar
Kelly, T.F., Gribb, T.T., Olson, J.D., Martens, R.L., Shepard, J.D., Wiener, S.A., Kunicki, T.C., Ulfig, R.M., Lenz, D.R., Strennen, E.M., Oltman, E., Bunton, J.H., & Strait, D.R. (2004). First Data from a Commerical Local Electrode Atom Probe (LEAP). Microsc Microanal 10, 373383.Google Scholar
Kotula, P.G. & Keenan, M.R. (2002). Spectral imaging: Towards quantitative X-ray microanalysis. Microsc Microanal 8 (Suppl. 2 Proceedings), 440441.Google Scholar
Kotula, P.G. & Keenan, M.R. (2003). Automated analysis of large (>4 Gb) spectral images with efficient out-of-core RAM algorithms. Microsc Microanal 9 (Suppl. 2), 152153.Google Scholar
Kotula, P.G., Keenan, M.R., & Michael, J.R. (2003a). Automated analysis of EDS spectral images in the SEM: A powerful new microanalysis technique. Microsc Microanal 9, 117.Google Scholar
Kotula, P.G., Keenan, M.R., & Michael, J.R. (2003b). Tomographic spectral imaging: Microanalysis in 3D. Microsc Microanal 9 (Suppl. 2), 10041005.Google Scholar
Kotula, P.G., Keenan, M.R., & Michael, J.R. (2004). Tomographic spectral imaging with a dual-beam FIB/SEM: 3D microanalysis. Microsc Microanal 10 (Suppl. 2), 11321133.Google Scholar
Legge, G.J.F. & Hammond, I. (1979). Total quantitative recording of elemental maps and spectra with a scanning microprobe. J Microsc 117, 201210.Google Scholar
Marschallinger, R. (1998). Three-dimensional reconstruction and modeling of microstructures and microchemistry in geological materials. Scanning 20, 6573.Google Scholar
Midgley, P.A. & Weyland, M. (2003). 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413431.Google Scholar
Miller, M.K. (1997). Three-dimensional atom probes. J Microsc 186, 116.Google Scholar
Möbus, G., Doole, R.C., & Inkson, B.J. (2003). Spectroscopic electron tomography. Ultramicroscopy 96, 433451.Google Scholar
Möbus, G. & Inkson, B.J. (2001). Three-dimensional reconstruction of buried nanoparticles by element sensitive tomography based upon inelastically scattered electrons. Appl Phys Lett 79, 13691371.Google Scholar
Ohlhausen, J.A., Keenan, M.R., Kotula, P.G., & Peebles, D.E. (2004). Multivariate statistical analysis of time-of-flight secondary ion mass spectrometry images using AXSIA. Appl Surf Sci 231–232, 230234.Google Scholar
Patkin, A.J. & Morrison, G.H. (1982). Secondary ion mass spectrometric image depth profiling for three-dimensional elemental analysis. Anal Chem 54, 25.Google Scholar
Rüdenauer, F.G. (1982). Instrumental aspects of spatially 3-dimensional SIMS analysis. In Secondary Ion Mass Spectrometry: SIMS3, Benninghoven, A., Gilber, J., László, J., Riedel, M. & Werner, H.W. (Eds.), pp. 221. Berlin: Springer.
Rüdenauer, F.G. (1993). Spatially multidimensional secondary ion mass spectrometry analysis. Analytica Chimica Acta 297, 197230.Google Scholar
Saadi, A., Lempereur, I., Sharonov, S., Autran, J.C., & Manfait, M. (1998). Spatial distribution of phenolic materials in durum wheat grain as probed by confocal fluorescence spectral imaging. J Cereal Sci 28, 107114.Google Scholar
Sakamoto, T., Cheng, Z., Takahashi, M., Owari, M., & Nihei, Y. (1998). Development of an ion and electron dual focused beam apparatus for three-dimensional microanalysis. Jpn J Appl Phys 37, 20512056.Google Scholar
Schofield, R.M.S. (1995). Applications of ion-beam tomographic element microanalysis. Nucl Instrum Methods Phys Res B 104, 212221.Google Scholar
Schofield, R.M.S. & Lefevre, H.W. (1992). PIXE-STIM microtomography: Zinc and manganese concentrations in a scorpion stinger. Nucl Instrum Methods Phys Res B 72, 104110.Google Scholar
Sharonov, S., Nabiev, I., Chourpa, I., Feofanov, A., Valisa, P., & Manfait, M. (1994). Confocal three-dimensional scanning laser Raman-SERS-Fluorescence microprobe: Spectral imaging and high-resolution applications. J Raman Spectrosc 25, 699707.Google Scholar
Smentkowski, V.S, Ohlhausen, J.A., Kotula, P.G., & Keenan, M.R. (2004). Multivariate statistical analysis of time-of-flight secondary ion mass spectrometry images—Looking beyond the obvious. Appl Surf Sci 231–232, 230234.Google Scholar
Takanashi, K., Wu, H., Ono, N., Cheng, Zh.H., Sakamoto, T., Owari, M., & Nihei, Y. (2000). Three-dimensional microanalysis of the wire-pad contact region of integrated circuit. Instrum Phys Conf Ser 165, 355356.Google Scholar
Tauler, R. & de Juan, A. (2002). Multivariate curve resolution home page. http://www.ub.es/gesq/mcr/mcr.htm, last updated October 2004.
Vekemans, B., Vincze, L., Brenker, F.E., & Adams, F. (2004). Processing of three-dimensional microscopic X-ray fluorescence data. J Anal Atom Spectrom 19, 13021308.Google Scholar

Figure6 Ag

Download Figure6 Ag(Video)
Video 12.1 MB

Figure6 Cu

Download Figure6 Cu(Video)
Video 11.7 MB

Figure8 Ag anaglyph

Download Figure8 Ag anaglyph(Video)
Video 33.7 MB

Figure8 Cu anaglyph

Download Figure8 Cu anaglyph(Video)
Video 17.4 MB

Figure11 corrosion

Download Figure11 corrosion(Video)
Video 12.5 MB