Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T15:56:27.477Z Has data issue: false hasContentIssue false

Tomographic Heating Holder for In Situ TEM: Study of Pt/C and PtPd/Al2O3 Catalysts as a Function of Temperature

Published online by Cambridge University Press:  18 March 2014

Lionel C. Gontard*
Affiliation:
Instituto de Ciencia de Materiales de Sevilla (CSIC), 41092, Sevilla, Spain
Rafal E. Dunin-Borkowski
Affiliation:
Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute (PGI), Forschungszentrum Jülich, D-52425 Jülich, Germany
Asunción Fernández
Affiliation:
Instituto de Ciencia de Materiales de Sevilla (CSIC), 41092, Sevilla, Spain
Dogan Ozkaya
Affiliation:
Johnson Matthey Technology Centre, Blount’s Court, Sonning Common, Reading RG4 9NH, UK
Takeshi Kasama
Affiliation:
Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
*
*Corresponding author. [email protected]
Get access

Abstract

A tomographic heating holder for transmission electron microscopy that can be used to study supported catalysts at temperatures of up to ~1,500°C is described. The specimen is placed in direct thermal contact with a tungsten filament that is oriented perpendicular to the axis of the holder without using a support film, allowing tomographic image acquisition at high specimen tilt angles with minimum optical shadowing. We use the holder to illustrate the evolution of the active phases of Pt nanoparticles on carbon black and PtPd nanoparticles on γ-alumina with temperature. Particle size distributions and changes in active surface area are quantified from tilt series of images acquired after subjecting the specimens to increasing temperatures. The porosity of the alumina support and the sintering mechanisms of the catalysts are shown to depend on distance from the heating filament.

Type
Techniques and Instrumentation Development
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, T.M., Wynblatt, P. & Tien, J.K. (1981). Coarsening kinetics of platinum particles on oxide substrates. Acta Metall 29, 921929.Google Scholar
Ajayan, P.M. & Marks, L.D. (1988). Quasimelting and phases of small particles. Phys Rev Lett 60, 585587.Google Scholar
Barnard, A.S., Young, N.P., Kirkland, A.I., Van Huis, M.A. & Xu, H. (2009). Nanogold: A quantitative phase map. ACS Nano 3(6), 14311436.Google Scholar
Benavidez, A.D., Kovarik, L., Genc, A., Agrawal, N., Larsson, E.M., Hansen, T.W., Karim, A.M. & Datye, A.K. (2010). Environmental transmission electron microscopy study of the origins of anomalous particle size distributions in supported metal catalysts. ACS Catal 2, 23492356.Google Scholar
Bett, J.A., Kinoshita, K. & Stonehart, P. (1974). Crystallite growth of platinum dispersed on graphitized carbon black. J Catal 35, 307316.Google Scholar
Cavalca, F., Laursen, A.B., Kardynal, B.E., Dunin-Borkowski, R.E., Dahl, S., Wagner, J.B. & Hansen, T.W. (2012). In-situ transmission electron microscopy of light-induced photocatalytic reactions. Nanotechnology 23, 075705.Google Scholar
Clark, R.W., Tien, J.K. & Wynblatt, P. (1980). Loss of palladium from model platinum-palladium supported catalysts during annealing. J Catal 61, 1518.Google Scholar
Clark, R.W., Wynblatt, P. & Tien, J.K. (1982). Coarsening kinetics of alloy platinum-palladium particles on oxide substrates. Acta Metall 30, 136146.Google Scholar
Coloma, F., Sepúlveda-Escribano, A. & Rodríguez-Reinoso, F. (1995). Heat-treated carbon blacks as supports for platinum catalysts. J Catal 154, 299305.CrossRefGoogle Scholar
Creemer, J.F., Helveg, S., Kooyman, P.J., Molenbroek, A.M., Zandbergen, H.W. & Sarro, P.M. (2010). A MEMS reactor for atomic-scale microscopy of nanomaterials under industrially relevant conditions. J Microelectromech Syst 19, 254264.Google Scholar
Ercolesi, F., Andreoni, W. & Tosatti, E. (1991). Melting of small gold particles: mechanisms and size effects. Phys Rev Lett 66(7), 911914.CrossRefGoogle Scholar
Gontard, L.C., Chang, L.Y., Hetherington, C.J.D., Kirkland, A.I., Ozkaya, D. & Dunin-Borkowski, R.E. (2007). Aberration-corrected imaging of active sites on industrial catalyst nanoparticles. Angew Chem Int Ed 46, 36833685.Google Scholar
Gontard, L.C., Dunin-Borkowski, R.E. & Ozkaya, D. (2008). Three-dimensional shapes and spatial distributions of Pt and PtCr catalyst nanoparticles on carbon black. J Microsc 232, 248259.CrossRefGoogle ScholarPubMed
Gontard, L.C., Dunin-Borkowski, R.E., Gass, M.H., Bleloch, A.L. & Ozkaya, D. (2009). Three-dimensional shapes and structures of lamellar-twinned fcc nanoparticles using ADF STEM. J Electron Microsc 58, 167174.Google Scholar
Gontard, L.C., Ozkaya, D. & Dunin-Borkowski, R.E. (2011). A simple algorithm for measuring particle size distributions on an uneven background from TEM images. Ultramicroscopy 111, 101106.Google Scholar
González, J.C., Hernández, J.C., López-Haro, M., del Río, E., Delgado, J.J., Hungría, A.B., Trasobares, S., Bernal, S., Midgley, P.A. & Calvino, J.J. (2009). 3D characterization of gold nanoparticles supported on heavy metal oxide catalysts by HAADF-STEM electron tomography. Angew Chem Int Ed 48, 53135315.Google Scholar
Guisbiers, G., Abudukelimu, G. & Hourlier, D. (2011). Size-dependent catalytic and melting properties of platinum palladium nanoparticles. Nanoscale Res Lett 6, 15.CrossRefGoogle ScholarPubMed
Hansen, T.W., DeLaRiva, A.T., Challa, S.R. & Datye, A.K. (2013). Sintering of catalytic nanoparticles: Particle migration or Ostwald ripening? ACC Chem Res 46(8), 17201730.Google Scholar
Hansen, T.W., Wagner, T.W., Hansen, P.L., Dahl, S., Topsoe, H. & Jacobsen, C.J.H. (2002). Atomic-resolution in-situ transmission electron microscopy of a promoter of a heterogeneous catalyst. Science 294, 15081509.Google Scholar
Harris, P.J.F. (1986). The sintering of platinum particles in an alumina-supported catalyst: Further transmission electron microscopy studies. J Catal 97, 527542.Google Scholar
Harris, P.J.F. (1995). Growth and structure of supported metal catalyst particles. Int Mater Rev 40(3), 97115.Google Scholar
Heidenreich, R.D., Hess, W.M. & Ban, L.L. (1968). A test object and criteria for high resolution electron microscopy. J App Cryst 1, 119.CrossRefGoogle Scholar
Horch, S., Lorensen, F., Helveg, S., Lægsgaard, E., Stensgaard, I., Jacobsen, K.W., Nørskov, J.K. & Besenbacher, F. (1999). Enhancement of surface self-diffusion of platinum atoms by adsorbed hydrogen. Nature 398, 134136.Google Scholar
José-Yacamán, M., Gutierrez-Wing, C., Miki, M., Yang, D.-Q., Piyakis, K.N. & Sacher, E. (2005). Surface diffusion and coalescence of mobile metal nanoparticles. J Phys Chem B 109, 97039711.Google Scholar
Kamino, T., Kuroda, K. & Saka, H. (1992). In situ HREM/microanalysis study of reduction of Al2O3 with palladium. Ultramicroscopy 41, 245248.Google Scholar
Kamino, T., Yaguchi, T., Konno, M., Watabe, A., Marukawa, T., Mima, T., Kuroda, K., Saka, H., Arai, S., Makino, H., Suzuki, Y. & Kishita, K. (2005). Development of a gas injection/specimen heating holder for use with transmission electron microscope. J Electron Microsc 54(6), 497503.Google Scholar
Kamino, T., Yaguchi, T., Sato, T. & Hashimoto, T. (2005). Development of a technique for high resolution electron microscopic observation of nano-materials at elevated temperatures. J Electron Microsc 54(6), 505508.Google Scholar
Linderoth, T.R., Horch, S., Lægsgaard, E., Stensgaard, I. & Besenbacher, F. (1997). Surface diffusion of Pt on Pt(110): Arrhenius behavior of long jumps. Phys Rev Lett 78(26), 49784981.Google Scholar
Mehraeen, S., McKeown, J.T., Deshmukh, P.V., Evans, J.E., Abellan, P., Xu, P., Reed, B.W., Taheri, M.L., Fischione, P.E. & Browning, N.D. (2013). A (S)TEM gas cell holder with localized laser heating for in-situ experiments. Microsc Microanal 19, 470478.Google Scholar
Mishra, Y.K., Mohapatra, S., Avasthi, D.K., Lalla, N.P. & Gupta, A. (2010). Tailoring the size of gold nanoparticles by electron beam inside transmission electron microscope. Adv Mat Lett 1(2), 151155.Google Scholar
Ozkaya, D., Thompsett, D., Goodlet, G., Spratt, S., Ash, P. & Boyd, D. (2003). Characterisation of C supported Pt nano-particles using HREM. Inst Phys Conf Ser 179, 127.Google Scholar
Peng, Z., Somodi, F., Helveg, S., Kisielowski, C., Specht, P. & Bell, A.T. (2012). High-resolution in-situ and ex situ TEM studies on graphene formation and growth on Pt nanoparticles. J Catal 286, 2229.CrossRefGoogle Scholar
Ralph, B.T.R. & Hogarth, M.P. (2002). Catalysis for low-temperature fuel cells. Part I: The cathode challenges. Plat Met Rev 46, 314.Google Scholar
Ruckenstein, E. & Lee, S.H. (1984). Redispersion and migration of Ni supported on alumina. J Catal 86, 457.Google Scholar
Sankaranarayanan, S.K.R.S., Bhethanabotla, V.R. & Joseph, B. (2005). Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters. Phys Rev B 71, 195415.Google Scholar
Sepúlveda-Escribano, A., Coloma, F. & Rodíguez-Reinoso, F. (1998). Platinum catalysts supported on carbon blacks with different surface chemical properties. Appl Catal A 173, 247257.Google Scholar
Simonsen, S.B., Chorkendorff, I., Dahl, S., Skoglundh, M., Sehested, J. & Helveg, S. (2010). Direct observations of oxygen-induced platinum nanoparticle ripening studied by in-situ tem. J Am Chem Soc 132, 79687975.CrossRefGoogle ScholarPubMed
Tauster, S.J. (1987). Strong metal-support interactions. J Am Chem Soc 4, 170175.Google Scholar
Wynblatt, P. (1976). Particle growth in model supported metal catalysts-II. Comparison of experiment with theory. Acta Mettal 24, 11751182.Google Scholar
Wynblatt, P. & Gjostein, N.A. (1976). Particle growth in model supported metal catalysts-I. Theory. Acta Mettal 24, 11651174.Google Scholar