Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T11:11:44.440Z Has data issue: false hasContentIssue false

Three-Dimensional Morphological and Mineralogical Characterization of Testate Amebae

Published online by Cambridge University Press:  10 September 2013

Eric Armynot du Châtelet*
Affiliation:
Université de Lille I, CNRS, Laboratoire Géosystèmes, 59655 Villeneuve d'Ascq, France
Catherine Noiriel
Affiliation:
Géosciences Environnement Toulouse (GET), Observatoire Midi-Pyrénées, Université Paul Sabatier, CNRS, IRD, 31400 Toulouse, France
Maxence Delaine
Affiliation:
Université de Lille I, CNRS, Laboratoire Géosystèmes, 59655 Villeneuve d'Ascq, France
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

Testate amebae are unicellular shelled protozoa commonly used as indicators in ecological and paleoecological studies. We explored the potential application of three-dimensional (3D) X-ray micro-tomography used in addition to 2D techniques (environmental scanning electron microscopy, electron probe micro-analysis, and cathodoluminescence) for detailed characterization of agglutinated shells of protozoa. We analyzed four specimens of the aquatic testate ameba Difflugia oblonga (Arcellinida), to test whether size distribution and mineral composition of shell grains diverged from sediment size distribution and mineralogical composition. From the 3D images, the geometry of the specimens (size and mass) and of the individual grains forming the specimen (grain size distribution and volume) were calculated. Based on combined chemical, mineralogical, and morphological analyses we show that D. oblonga is able to selectively pick up the small size fraction of the sediment with a preference for low-density silicates close to quartz density (~2.65). The maximum size of the grains matches the size of the pseudostome (shell aperture), suggesting the existence of a physical limit to grain size used for building the shell. This study illustrates the potential of this combined approach to characterize agglutinated shells of protozoa. This data can be useful for detailed morphological studies with applications in taxonomy and ecology.

Type
Biomedical and Biological Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoki, Y., Hoshino, M. & Matsubara, T. (2007). Silica and testate amoebae in a soil under pine-oak forest. Geoderma 142(1-2), 2935.Google Scholar
Armbruster, T., Bonazzi, P., Akasaka, M., Bermanec, V., Chopin, C., Gieré, R., Heuss-Aassbichler, S., Liebscher, A., Menchetti, S., Pan, Y. & Pasero, M. (2006). Recommended nomenclature of epidote-group minerals. Eur J Mineralogy 18, 551567.Google Scholar
Armynot du Châtelet, E., Guillot, F., Recourt, P., Ventalon, S. & Tribovillard, N. (2010). Influence of sediment grain size and mineralogy on testate amoebae test construction. Comptes Rendus Geoscience 342, 710717.Google Scholar
Bernard, D. & Chirazi, A. (2006). Numerically enhanced microtomographic imaging method using a novel ring artefact filter. In Advances in X-Ray Tomography for Geomaterials, Desrues, J., Viggiani, G. & Bésuelle, P. (Eds.), p. 452. London: ISTE.Google Scholar
Charman, D.J. (2001). Biostratigraphic and palaeoenvironmental applications of testate amoebae. Quaternary Sci Rev 20(16-17), 17531764.Google Scholar
Drever, J.I. (Ed.) (1985). The Chemistry of Weathering. New York: Reidel.Google Scholar
Eckert, B.S. & McGee-Russell, S.M. (1974). Shell structure in Difflugia lobostoma observed by scanning and transmission electron microscopy. Tissue Cell 6(2), 215221.Google Scholar
Foissner, W. (1987). Soil protozoa: Fundamental problems, ecological significance, adaptations in ciliates and testaceans, bioindicators, and guide to the literature. Prog Protistology 2, 69212.Google Scholar
Foissner, W. (1999). Soil protozoa as bioindicators: Pros and cons, methods, diversity, representative examples. Agr, Ecosyst Environ 74, 95112.Google Scholar
Gandouin, E., Franquet, E. & Van Vliet-Lanoë, B. (2005). Chironomids (Diptera) in river floodplains: Their status and potential use for palaeoenvironmental reconstruction purposes. Archiv für Hydrobiologie 162(4), 511534.Google Scholar
Gilbert, D., Amblard, C., Bourdier, G., Francez, A.-J. & Mitchell, E.A.D. (2000). Le régime alimentaire des Thécamoebiens (Protista, Sarcodina). Année Biologique 39, 5768.Google Scholar
Goguel, J. & Graindor, M.-J. (1963). Cartes géologiques de la France au 1/50 000- Feuille de Cherbourg. Orléans, France: BRGM.Google Scholar
Gonzales, R.C. & Woods, R.E. (1992). Digital Image Processing. Reading, MA: Addison-Wesley Publishing Company.Google Scholar
Graindor, M.J. & Payreyn, C. (1969). Cartes géologiques de la France au 1/50 000- Feuille de Saint-Vaast-la-Hougue. Orléans, France: BRGM.Google Scholar
Hawthorne, F.C. & Oberti, R. (2007). Classification of the amphiboles. Rev Mineral Geochem 67, 5588.CrossRefGoogle Scholar
Herman, G.T. (1980). Image Reconstruction from Projections: Fundamentals of Computerized Tomography. New York: Academic Press.Google Scholar
Loizeau, J.-L., Arbouille, D., Santiago, S. & Vernet, J.-P. (1994). Evaluation of a wide range laser diffraction grain size analyser for use with sediments. Sedimentology 41, 353361.Google Scholar
McCave, I.N., Manighetti, B. & Robinson, S.G. (1995). Sortable silt and fine sediment size/composition slicing: Parameters for palaeocurrent speed and palaeoceanography. Paleoceanography 10(3), 593610.Google Scholar
Moraczewski, J. (1971). La composition chimique de la coque d'Arcella discoides Ehrbg. Acta Protozoologica 8, 423437.Google Scholar
Netzel, H. (1972). Die Schalenbildung bei Difflugia oviformis (Rhizopoda, Testacea). Zoologisches Zellforsch 135, 5561.Google Scholar
Netzel, H. (1979). Morphogenesis in testaceous amoebae. Eur J Cell Biol 20, 116135.Google Scholar
Ogden, C.G. (1988). Morphology of the organic shell matrix of Difflugia (Rhizopoda) in culture, inclusing modification by the addition of agglutinate particles. Archiv für Protistenkunde 136, 365376.Google Scholar
Ogden, C.G. & Fairman, S. (1979). Further observations on pyriform species of Difflugia (Rhizopodea). Archiv für Protistenkunde 122, 372381.CrossRefGoogle Scholar
Patterson, T. & Kumar, A. (2000). Use of Arcellacea (Thecamoebians) to gauge levels of contamination and remediation in industrially polluted lakes. In Environmental Micropaleontology, Martin, R.E. (Ed.), pp. 257278. New York: Kluwer Academic/Plenum.CrossRefGoogle Scholar
Reinhardt, E.G., Dalby, A.P., Kumar, A. & Patterson, T. (1998). Arcellaceans as pollution indicators in mine tailling contaminatings lakes near Cobalt, Ontario, Canada. Micropaleontology 44(2), 131148.Google Scholar
Salvo, L., Cloetens, P., Maire, E., Zabler, S., Blandin, J.J., Buffière, J.Y., Ludwig, W., Boller, E., Bellet, D. & Josserond, C. (2003). X-ray micro-tomography an attractive characterisation technique in materials science. Nucl Instrum Methods Phys Res B 200, 273286.Google Scholar
Saucin-Meulenberg, M., Bussers, J.C. & Jeuniaux, C. (1973). Composition chimique de la thèque de quelques thécamoebiens (Protozoaires). Bulletin Biologique de la France et de la Belgique 107, 107113.Google Scholar
Scott, D.B., Medioli, F.S. & Schafer, C.T. (2001). Monitoring in Coastal Environments Using Foraminifera and Thecamoebian Indicators. New York: Cambridge University Press.Google Scholar
Stout, J.D. & Walker, G.D. (1976). Discrimination of mineral particles in test formation by thecamoebae. Trans Am Microsc Soc 95(3), 486489.Google Scholar
Trentesaux, A., Recourt, P., Bout-Roumazeilles, V. & Tribovillard, N. (2001). Carbonate grain-size distribution in hemipelagic sediments from a laser particle sizer. J Sediment Res 71(5), 858862.Google Scholar
Waterlot, G. (1968). Cartes géologiques de la France au 1/50 000—Feuille de Cassel. Orléans, France: BRGM.Google Scholar
Yamaoka, I. & Mizuhira, V. (1987). X-ray microanalysis of the mineral components in the scales of an amoeba, Cochliopodium sp. (Testacea). Cell Tissue Res 247, 633637.Google Scholar
Supplementary material: PDF

Armyknot du Chatelet Supplementary Material

Supplementary Material

Download Armyknot du Chatelet Supplementary Material(PDF)
PDF 45 KB
Supplementary material: PDF

Armyknot du Chatelet Supplementary Material

Supplementary Material

Download Armyknot du Chatelet Supplementary Material(PDF)
PDF 66 KB