Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T02:34:41.406Z Has data issue: false hasContentIssue false

Three-Dimensional Analysis by Electron Diffraction Methods of Nanocrystalline Materials

Published online by Cambridge University Press:  04 November 2011

Christoph Gammer*
Affiliation:
University of Vienna, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Vienna, Austria
Clemens Mangler
Affiliation:
University of Vienna, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Vienna, Austria
Hans-Peter Karnthaler
Affiliation:
University of Vienna, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Vienna, Austria
Christian Rentenberger
Affiliation:
University of Vienna, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Vienna, Austria
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

To analyze nanocrystalline structures quantitatively in 3D, a novel method is presented based on electron diffraction. It allows determination of the average size and morphology of the coherently scattering domains (CSD) in a straightforward way without the need to prepare multiple sections. The method is applicable to all kinds of bulk nanocrystalline materials. As an example, the average size of the CSD in nanocrystalline FeAl made by severe plastic deformation is determined in 3D. Assuming ellipsoidal CSD, it is deduced that the CSD have a width of 19 ± 2 nm, a length of 18 ± 1 nm, and a height of 10 ± 1 nm.

Type
Software and Techniques Development
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arslan, I., Yates, T.J.V., Browning, N.D. & Midgley, P.A. (2005). Embedded nanostructures revealed in three dimensions. Science 309, 21952198.CrossRefGoogle ScholarPubMed
Gammer, C., Mangler, C., Rentenberger, C. & Karnthaler, H.P. (2010). Quantitative local profile analysis of nanomaterials by electron diffraction. Scripta Mater 63, 312315.CrossRefGoogle Scholar
Geist, D., Gammer, C., Mangler, C., Rentenberger, C. & Karnthaler, H.P. (2010). Electron microscopy of severely deformed L12 intermetallics. Phil Mag 90, 46354645.CrossRefGoogle Scholar
Huang, X. (2007). Characterization of nanostructured metals produced by plastic deformation. J Mat Sci 42, 15771583.CrossRefGoogle Scholar
Karnthaler, H.P., Waitz, T., Rentenberger, C. & Mingler, B. (2004). TEM of nanostructured metals and alloys. Mat Sci Eng A 387389, 777782.CrossRefGoogle Scholar
Kolb, U., Gorelik, T., Kbel, C., Otten, M.T. & Hubert, D. (2007). Towards automated diffraction tomography: Part I—Data acquisition. Ultramicroscopy 107, 507513.CrossRefGoogle ScholarPubMed
Kolb, U., Gorelik, T. & Otten, M.T. (2008). Towards automated diffraction tomography: Part II—Cell parameter determination. Ultramicroscopy 108, 763772.CrossRefGoogle ScholarPubMed
Lin, J.D. & Duh, J.G. (1997). The use of X-ray line profile analysis to investigate crystallite size and microstrain for zirconia powders. J Mater Sci 32, 57795790.CrossRefGoogle Scholar
Mangler, C., Gammer, C., Karnthaler, H.P. & Rentenberger, C. (2010). Structural modifications during heating of bulk nanocrystalline FeAl produced by high-pressure torsion. Acta Mater 58, 56315638.CrossRefGoogle ScholarPubMed
Meyers, M., Mishra, A. & Benson, D. (2006). Mechanical properties of nanocrystalline materials. Prog Mater Sci 51, 427556.CrossRefGoogle Scholar
Midgley, R.E. & Dunin-Borkowski, P.A. (2009). Electron tomography and holography in materials science. Nat Mater 8, 271280.CrossRefGoogle ScholarPubMed
Nickell, S., Kofler, C., Leis, A.P. & Baumeister, W. (2006). A visual approach to proteomics. Nat Rev Mol Cell Bio 7, 225230.CrossRefGoogle ScholarPubMed
Peterlechner, M., Waitz, T. & Karnthaler, H.P. (2009). Nanoscale amorphization of severely deformed NiTi shape memory alloys. Scripta Mater 60, 11371140.CrossRefGoogle Scholar
Pippan, R., Scheriau, S., Taylor, A., Hafok, M., Hohenwarter, A. & Bachmaier, A. (2010). Saturation of fragmentation during severe plastic deformation. Annu Rev Mater Sci 40, 319343.CrossRefGoogle Scholar
Rentenberger, C. & Karnthaler, H.P. (2008). Extensive disordering in long-range-ordered Cu3Au induced by severe plastic deformation studied by transmission electron microscopy. Acta Mater 56, 25262530.CrossRefGoogle Scholar
Rentenberger, C., Waitz, T. & Karnthaler, H.P. (2004). HRTEM analysis of nanostructured alloys processed by severe plastic deformation. Scripta Mater 51, 789794.CrossRefGoogle Scholar
Ungar, T. & Borbely, A. (1996). The effect of dislocation contrast on X-ray line broadening: A new approach to line profile analysis. Appl Phys Lett 69, 31373139.CrossRefGoogle Scholar
Ungar, T., Dragomir, I. & Revesz, A. (1999). The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice. J Appl Crystallogr 32, 9921002.CrossRefGoogle Scholar
Valiev, R.Z., Estrin, Y., Horita, Z., Langdon, T.G., Zehetbauer, M.J. & Zhu, Y.T. (2006). Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58, 3339.CrossRefGoogle Scholar
Williamson, G.K. & Hall, W.H. (1953). X-ray line broadening from filed aluminium and wolfram. Acta Metall 1, 2231.CrossRefGoogle Scholar
Zhang, D., Oleynikov, P., Hovmller, S. & Zou, X. (2010). Collecting 3D electron diffraction data by the rotation method. Z Kristallogr 255, 94102.CrossRefGoogle Scholar
Zhilyaev, A.P. & Langdon, T.G. (2008). Using high-pressure torsion for metal processing: Fundamentals and applications. Prog Mater Sci 53, 893979.CrossRefGoogle Scholar
Zhu, Y.T., Huang, J.Y., Gubicza, J., Ungar, T., Wang, Y.M., Ma, E. & Valiev, R.Z. (2003). Nanostructures in Ti processed by severe plastic deformation. J Mater Res 18, 19081917.CrossRefGoogle Scholar