Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-02T23:32:12.907Z Has data issue: false hasContentIssue false

Thickness Measurements Using Photonic Modes in Monochromated Electron Energy-Loss Spectroscopy

Published online by Cambridge University Press:  10 March 2014

Aycan Yurtsever
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850, USA
Martin Couillard
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850, USA
Jerome K. Hyun
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850, USA
David A. Muller*
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850, USA Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14850, USA
*
*Corresponding author.[email protected]
Get access

Abstract

Characteristic energies of photonic modes are a sensitive function of a nanostructures’ geometrical parameters. In the case of translationally invariant planar waveguides, the eigen-energies reside in the infrared to ultraviolet parts of the optical spectrum and they sensitively depend on the thickness of the waveguide. Using swift electrons and the inherent Cherenkov radiation in dielectrics, the energies of such photonic states can be effectively probed via monochromated electron energy-loss spectroscopy (EELS). Here, by exploiting the strong photonic signals in EELS with 200 keV electrons, we correlate the energies of waveguide peaks in the 0.5–3.5 eV range with planar thicknesses of the samples. This procedure enables us to measure the thicknesses of cross-sectional transmission electron microscopy samples over a 1–500 nm range and with best-case accuracies below ±2%. The measurements are absolute with the only requirement being the optical dielectric function of the material. Furthermore, we provide empirical formulation for rapid and direct thickness estimations for a 50–500 nm range. We demonstrate the methodology for two semiconducting materials, silicon and gallium arsenide, and discuss how it can be applied to other dielectrics that produce strong optical fingerprints in EELS. The asymptotic form of the loss function for two-dimensional materials is also discussed.

Type
EDGE Special Issue
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125, USA

Current address: National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6.

References

Allen, S.M. (1981). Foil thickness measurements from convergent-beam diffraction patterns. Philos Mag A 43, 325335.CrossRefGoogle Scholar
Berriman, J., Bryan, R.K., Freeman, R. & Leonard, K.R. (1984). Methods for specimen thickness determination in electron microscopy. Ultramicroscopy 13, 351364.Google Scholar
Castro-Fernandez, F.R., Sellars, C.M. & Whiteman, J.A. (1985). Measurement of foil thickness and extinction distance by convergent beam transmission electron microscopy. Philos Mag A 52, 289303.CrossRefGoogle Scholar
Cha, J.J., Yu, Z., Smith, E., Couillard, M., Fan, S. & Muller, D.A. (2010). Mapping local optical densities of states in silicon photonic structures with nanoscale electron spectroscopy. Phys Rev B 81, 113102.Google Scholar
Chen, C.H. & Silcox, J. (1975). Detection of optical surface guided modes in thin graphite films by high-energy electron scattering. Phys Rev Lett 35, 390393.CrossRefGoogle Scholar
Chen, C.H., Silcox, J. & Vincent, R. (1975). Electron-energy losses in silicon: Bulk and surface plasmons and Čerenkov radiation. Phys Rev B 12, 6471.Google Scholar
Couillard, M., Yurtsever, A. & Muller, D.A. (2008). Competition between bulk and interface plasmonic modes in valence electron energy-loss spectroscopy of ultrathin SiO2 gate stacks. Phys Rev B 77, 085318.CrossRefGoogle Scholar
Couillard, M., Yurtsever, A. & Muller, D.A. (2010). Interference effects on guided Cherenkov emission in silicon from perpendicular, oblique, and parallel boundaries. Phys Rev B 81, 195315.CrossRefGoogle Scholar
Egerton, R.F. (1996). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Plenum Press.Google Scholar
Egerton, R.F. & Cheng, S.C. (1987). Measurement of local thickness by electron energy-loss spectroscopy. Ultramicroscopy 21, 231244.Google Scholar
Erni, R. & Browning, N.D. (2008). The impact of surface and retardation losses on valence electron energy-loss spectroscopy. Ultramicroscopy 108, 8499.CrossRefGoogle ScholarPubMed
García de Abajo, F.J. & Kociak, M. (2008 a). Electron energy-gain spectroscopy. New J Phys 10, 073035.Google Scholar
García de Abajo, F.J. & Kociak, M. (2008 b). Probing the photonic local density of states with electron energy loss spectroscopy. Phys Rev Lett 100, 106804.CrossRefGoogle ScholarPubMed
García de Abajo, F.J., Pattantyus-Abraham, A.G., Zabala, N., Rivacoba, A., Wolf, M.O. & Echenique, P.M. (2003). Cherenkov effect as a probe of photonic nanostructures. Phys Rev Lett 91, 143902.Google Scholar
Horita, Z., Ichitani, K., Sano, T. & Nemoto, M. (1989). Applicability of the differential X-ray absorption method to the determinaitons of foil thickness and local composition in the analytical electron microscope. Philos Mag A 5, 939952.Google Scholar
Hosoi, J., Oikawa, T., Inoue, M., Kokubo, Y. & Hama, K. (1981). Measurement of partial specific thickness (net thickness) of critical-point-dried cultured fibroblast by energy analysis. Ultramicroscopy 7, 147153.Google Scholar
Hyun, J.K., Couillard, M., Rajendran, P., Liddell, C.M. & Muller, D.A. (2008). Measuring far-ultraviolet whispering gallery modes with high energy electrons. Appl Phys Lett 93, 243106.CrossRefGoogle Scholar
Krivanek, O.L., Lovejoy, T.C., Dellby, N. & Carpenter, R.W. (2013). Monochromated STEM with a 30 meV-wide, atom-sized electron probe. Microscopy 62, 321.Google Scholar
Kröger, E. (1968). Berechnung der Energieverluste schneller Elektronen in dünnen Schichten mit Retardierung. Z Physik 216, 115135.Google Scholar
Lazar, S., Botton, G.A. & Zandbergen, H.W. (2006). Enhancement of resolution in core-loss and low-loss spectroscopy in a monochromated microscope. Ultramicroscopy 106, 10911103.Google Scholar
Mitterbauer, C., Kothleitner, G., Grogger, W., Zandbergen, H., Freitag, B., Tiemeijer, P. & Hofer, F. (2003). Electron energy-loss near-edge structures of 3D transition metal oxides recorded at high-energy resolution. Ultramicroscopy 96, 469480.CrossRefGoogle ScholarPubMed
Mkhoyan, K.A., Babinec, T., Maccagnano, S.E., Kirkland, E.J. & Silcox, J. (2007). Separation of bulk and surface-losses in low-loss EELS measurements in STEM. Ultramicroscopy 107, 345355.CrossRefGoogle ScholarPubMed
Muller, D.A. & Silcox, J. (1995). Delocalization in inelastic scattering. Ultramicroscopy 59, 195213.Google Scholar
Palik, E.D. (1998). Handbook of Optical Constants. Orlando, FL: Academic Press.Google Scholar
Ritchie, R.H. (1957). Plasma losses by fast electrons in thin films. Phys Rev 106, 874881.Google Scholar
Rossouw, D., Couillard, M., Vickery, J., Kumacheva, E. & Botton, G.A. (2011). Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe. Nano Lett 11, 14991504.Google Scholar
Sakoda, K. (2001). Optical Properties of Photonic Crystals. Berlin and New York: Springer.CrossRefGoogle Scholar
Schaffer, B., Riegler, K., Kothleitner, G., Grogger, W. & Hofer, F. (2009). Monochromated, spatially resolved electron energy-loss spectroscopic measurements of gold nanoparticles in the plasmon range. Micron 40, 269273.CrossRefGoogle ScholarPubMed
Scott, V.D. & Love, G. (1987). Foil thickness measurements in transmission electron microscopy. Mater Sci Technol 3, 600608.Google Scholar
Stöger-Pollach, M., Franco, H., Schattschneider, P., Lazar, S., Schaffer, B., Grogger, W. & Zandbergen, H.W. (2006). Čerenkov losses: A limit for bandgap determination and Kramers–Kronig analysis. Micron 37, 396402.CrossRefGoogle ScholarPubMed
Stöger-Pollach, M., Laister, A. & Schattschneider, P. (2008). Treating retardation effects in valence EELS spectra for Kramers–Kronig analysis. Ultramicroscopy 108, 439444.Google Scholar
Williams, D.B. & Carter, C.B. (1996). Transmission Electron Microscopy: A Textbook for Materials Science. New York: Plenum Press.Google Scholar
Yurtsever, A. (2008). Three-dimensional plasmon imaging and photonic states of silicon nano-composites by fast electrons. Doctoral dissertation, Cornell University.Google Scholar
Yurtsever, A., Couillard, M. & Muller, D.A. (2008). Formation of guided Cherenkov radiation in silicon-based nanocomposites. Phys Rev Lett 100, 217402.Google Scholar
Yurtsever, A., van der Veen, R.M. & Zewail, A.H. (2012). Subparticle ultrafast spectrum imaging in 4D electron microscopy. Science 335, 5964.Google Scholar
Zhang, H.-R., Egerton, R.F. & Malac, M. (2012). Local thickness measurement through scattering contrast and electron energy-loss spectroscopy. Micron 43, 815.CrossRefGoogle ScholarPubMed