No CrossRef data available.
Published online by Cambridge University Press: 02 July 2020
High resolution and high efficiency planar display, one of the national priorities for advanced technologies and commercial applications, require highly efficient phosphor materials with crystalline monodispersive fine particles [1,2]. Europium oxide activated yttrium oxide (Y2O3:Eu) is a potential red-emission phosphor powders to be used in high efficiency electroluminescence and field emission displays. In this paper, a novel hydrolysis technique is employed to prepare phosphor particles of Y2O3: Eu, and the structure characterization is reported.
In this synthesis technique, urea reacts with water to release OH−, cations of Y3+ and Eu3+ combine with OH− to form (Y1−xEux)(OH)3 precipitates. Y2O3 particles doped with Eu are formed after the precipitates being fired at a given temperature [3]. The particles prepared by this method are nearly spherical, and have an average diameter of ∼200 nm (Fig. 1). The distribution of particle sizes is narrow, and almost no agglomeration among particles is observed. The particle sizes remain approximately the same before (Fig. 1a) and after (Fig. 1b) being fired at 1200°C.