Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-03T22:01:08.588Z Has data issue: false hasContentIssue false

Synchrotron UV Fluorescence Microscopy Uncovers New Probes in Cells and Tissues

Published online by Cambridge University Press:  25 August 2010

Frederic Jamme
Affiliation:
Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif sur Yvette, France Cepia, Institut National de la Recherche Agronomique (INRA), BP 71627, 44316 Nantes, France
Sandrine Villette
Affiliation:
Centre de Biophysique Moléculaire, CNRS UPR4301, Rue Charles Sadron, 45071 Orléans, France
Alexandre Giuliani
Affiliation:
Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif sur Yvette, France Cepia, Institut National de la Recherche Agronomique (INRA), BP 71627, 44316 Nantes, France
Valerie Rouam
Affiliation:
Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif sur Yvette, France
Frank Wien
Affiliation:
Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif sur Yvette, France
Bruno Lagarde
Affiliation:
Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif sur Yvette, France
Matthieu Réfrégiers*
Affiliation:
Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif sur Yvette, France
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Use of deep ultraviolet (DUV, below 350 nm) fluorescence opens up new possibilities in biology because it does not need external specific probes or labeling but instead allows use of the intrinsic fluorescence that exists for many biomolecules when excited in this wavelength range. Indeed, observation of label free biomolecules or active drugs ensures that the label will not modify the biolocalization or any of its properties. In the past, it has not been easy to accomplish DUV fluorescence imaging due to limited sources and to microscope optics. Two worlds were coexisting: the spectrofluorometric measurements with full spectrum information with DUV excitation, which lacked high-resolution localization, and the microscopic world with very good spatial resolution but poor spectral resolution for which the wavelength range was limited to 350 nm. To combine the advantages of both worlds, we have developed a DUV fluorescence microscope for cell biology coupled to a synchrotron beamline, providing fine tunable excitation from 180 to 600 nm and full spectrum acquired on each point of the image, to study DUV excited fluorescence emitted from nanovolumes directly inside live cells or tissue biopsies.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adar, F., Delhaye, M. & DaSilva, E. (2007). Evolution of instrumentation for detection of the Raman effect as driven by available technologies and by developing applications. J Chem Educ 84, 5060.CrossRefGoogle Scholar
Chen, R.F. (1967). Fluorescence quantum yields of tryptophan and tyrosine. Anal Lett 1, 3542.CrossRefGoogle Scholar
Cogswell, C.J. & Larkin, K.G. (1995). The specimen illumination path and its effect on image quality. In Handook of Biological Confocal Microscopy, Pawler, J.B. (Ed.), pp. 127137. New York: Springer Verlag.Google Scholar
Giuliani, A., Jamme, F., Rouam, V., Wien, F., Giorgetta, J.L., Lagarde, B., Chubar, O., Bac, S., Yao, I., Rey, S., Herbeaux, C., Marlats, J.L., Zerbib, D., Polack, F. & Réfrégiers, M. (2009). DISCO: A low-energy multipurpose beamline at synchrotron SOLEIL. J Synchrotron Rad 16, 835841.CrossRefGoogle ScholarPubMed
Köhler, A. (1904). Eine mikrophotographische Einrichtung für Ultraviolettes Licht (275 μμ) und damit angestellte Untersuchungen organischer Gewebe. Phys Z 5, 666673.Google Scholar
Li, Q. & Seeger, S. (2010). Autofluorescence detection in analytical chemistry and biochemistry. Appl Spectrosc Rev 45, 1243.CrossRefGoogle Scholar
Pavlova, I., Williams, M., El-Naggar, A., Richards-Kortum, R. & Gillenwater, A. (2008). Understanding the biological basis of autofluorescence imaging for oral cancer detection: High-resolution fluorescence microscopy in viable tissue. Clin Cancer Res 14, 23962404.CrossRefGoogle ScholarPubMed
Policard, A. (1924). Etudes sur les aspects offerts par des tumours expérimentales examinées à la lumière de Woods. C R Soc Biol 91, 14231425.Google Scholar
Ramanujam, N., Mitchell, M.F., Mahadevan, A., Warren, S., Thomsen, S., Silva, E. & Richards-Kortum, R. (1994). In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence. Proc Natl Acad Sci USA 91, 1019310197.CrossRefGoogle ScholarPubMed
Stübel, H. (1911). Die Fluoreszenz tierischer Gewebe in ultraviolettem Licht. Pflugers Arch Physiol 142, 114.CrossRefGoogle Scholar
Van der Oord, C.J.R., Gerritsen, H.C. & Levine, Y.K. (1992). Synchrotron radiation as a light source in confocal microscopy. Rev Sci Instrum 63, 632633.CrossRefGoogle Scholar
Van der Oord, C.J.R., Gerritsen, H.C., Rommerts, F.F.G., Shaw, D.A., Munro, I.H. & Levine, Y.K. (1995). Micro-volume time-resolved fluorescence spectroscopy using a confocal synchrotron radiation microscope. Appl Spectrosc 49, 14691473.CrossRefGoogle Scholar
Wagnières, G.A., Star, W.M. & Wilson, B.C. (1998). In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol 68, 603632.CrossRefGoogle ScholarPubMed
Zeskind, B.J., Jordan, C.D., Timp, W., Trapani, L., Waller, G., Horodincu, V., Ehrlich, D.J. & Matsudaira, P. (2007). Nucleic acid and protein mass mapping by live-cell deep-ultraviolet microscopy. Nat Meth 4, 567569.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Jamme Supplementary Material

Figure.pdf

Download Jamme Supplementary Material(PDF)
PDF 1.2 MB