Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-15T05:20:06.308Z Has data issue: false hasContentIssue false

Susceptibility of Limestone Petrographic Features to Salt Weathering: A Scanning Electron Microscopy Study

Published online by Cambridge University Press:  23 May 2013

Carlos Alves*
Affiliation:
Centro de Investigação Geológica, Ordenamento e Valorização de Recursos, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
Carlos Figueiredo
Affiliation:
Centro de Petrologia e Geoquímica, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
António Maurício
Affiliation:
Centro de Petrologia e Geoquímica, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
Luís Aires-Barros
Affiliation:
Centro de Petrologia e Geoquímica, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

Salt weathering is a major erosive process affecting porous materials in buildings. There have been attempts to relate erosive mass loss to physical characteristics of materials, but in the case of natural stone it is necessary to consider the effect of petrographic features that are a source of heterogeneity. In this paper, we use scanning electron microscopy before and after salt weathering tests in cubic specimens of three limestone types (two grainstones and a travertine) in an attempt to built conceptual models that relate petrographic features and salt weathering susceptibility (represented by mass loss). In the grainstones, the most relevant feature in controlling salt weathering processes is the interface between micrite aggregates and sparry cement that constitute weakness surfaces and barriers to fluid migration. Given the small size of the heterogeneities in relation to the test sample dimension and their spatial distribution, the macroscopic erosive patterns are globally homogeneously distributed, affecting edges and corners. In the travertine specimens, there are macroheterogeneities related to the presence of detritic-rich portions that cause heterogeneous erosive patterns in the specimens. Petrological modeling helps to understand results of salt weathering tests, supporting field studies for natural stone selection.

Type
Portuguese Society for Microscopy
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, C. (2009). Salt weathering of natural building stones: A review of the influence of rock characteristics. In Building Materials: Properties, Performance and Applications, Cornejo, D.N. & Haro, J.L. (Eds.), pp. 5794. New York, USA: Nova Science Publishers,.Google Scholar
Alves, C., Figueiredo, C., Maurício, A. & Aires-Barros, L. (2010). Contribuição para a caracterização do meio poroso de algumas rochas calcárias portuguesas. Proc. 12° Congresso Nacional de Geotecnia, pp. 57–66. (CD-ROM) (in Portuguese). Google Scholar
Alves, C., Figueiredo, C., Sequeira Braga, M.A., Maurício, A. & Aires-Barros, L. (2009). Aesthetic failure of limestones under salt crystallisation tests. In 3rd International Conference on Integrity, Reliability & Failure, Silva Gomes, J.F. & Meguid, S.A. (Eds.), CD-ROM publication. Porto: FEUP.Google Scholar
Alves, C., Figueiredo, C., Sequeira Braga, M.A., Maurício, A. & Aires-Barros, L. (2011). Limestone under salt decay tests: Assessment of pore network-dependent durability predictors. Environ Earth Sci 63, 15111527.CrossRefGoogle Scholar
Angeli, M., Benavente, D., Bigas, J.-P., Menéndez, B., Hébert, R. & David, C. (2008). Modification of the porous network by salt crystallization in experimentally weathered sedimentary stones. Mater Struct 41, 10911108.Google Scholar
Angeli, M., Bigas, J.P., Benavente, D., Menéndez, B., Hébert, R. & David, C. (2007). Salt crystallization in pores: Quantification and estimation of damage. Environ Geol 52, 205213.CrossRefGoogle Scholar
Arnold, A. & Zehnder, K. (1991). Monitoring wall paintings affected by soluble salts. In The Conservation of Wall Paintings, Cather, S. (Ed.), pp. 103135. Los Angeles, CA: Getty Conservation Institute.Google Scholar
Benavente, D., Cueto, N., Martínez Martínez, J., García del Cura, M.A. & Cañaveras, J.C. (2007). The influence of petrophysical properties on the salt weathering of porous building rocks. Environ Geol 52, 215224.Google Scholar
Benavente, D., García del Cura, M.A., Bernabéu, A. & Ordóñez, S. (2001). Quantification of salt weathering in porous stones using an experimental continuous partial immersion method. Eng Geol 59, 313325.Google Scholar
Benavente, D., García del Cura, M.A., Fort, R. & Ordóñez, S. (2004). Durability estimation of porous building stones from pore structure and strength. Eng Geol 74, 113127.Google Scholar
Birginie, J.M. (2000). Seawater absorption, permeability evolution and deterioration assessment of building stones subjected to marine exposure. In 9th Int Congress Deter Conserv Stone, Fassina, V. (Ed.), vol. 1, pp. 313321. Amsterdam, The Netherlands: Elsevier Science BV.Google Scholar
Blows, J.F., Carey, P.J. & Poole, A.B. (2003). Preliminary investigations into Caen Stone in the UK; its use, weathering and comparison with repair stone. Build Environ 38, 11431149.Google Scholar
Buj, O. & Gisbert, J. (2010). Influence of pore morphology on the durability of sedimentary building stones from Aragon (Spain) subjected to standard salt decay tests. Environ Earth Sci 61, 13271336.Google Scholar
Calia, A., Mecchi, A.M. & Quarta, G. (2000a). A research into intrinsic parameters material to the durability of highly porous building stones. In 9th Int Congress Deter Conserv Stone, Fassina, V. (Ed.), vol. 1, pp. 4957. Amsterdam, The Netherlands: Elsevier Science BV.Google Scholar
Calia, A., Mecchi, A.M. & Scudeler Baccelle, L. (2000b). Stone materials used in the masonry of Ortigia (Siracusa, Sicily). In 9th Int Congress Deter Conserv Stone, Fassina, V. (Ed.), vol. 1, pp. 195203. Amsterdam, The Netherlands: Elsevier Science BV.Google Scholar
Cardell, C., Delalieux, F., Roumpopoulos, K., Moropoulou, A., Auger, F. & VanGrieken, R. (2003). Salt-induced decay in calcareous stone monuments and buildings in a marine environment in SW France. Constr Build Mater 17, 165179.Google Scholar
Carvalho, J., Manuppella, G. & Moura, A.C. (2000). Calcários Ornamentais Portugueses. Boletim de Minas 37, 223232 (in Portuguese).Google Scholar
Cassar, J. (2002). Deterioration of the Globigerina limestone of the Maltese Islands. In Natural Stone, Weathering Phenomena, Conservation Strategies and Case Studies, Siegesmund, S., Weiss, T. & Vollbrecht, A. (Eds.), pp. 3349. London, UK: Geological Society of London.Google Scholar
Cultrone, G., Russo, L.G., Calabrò, C., Urosevič, M. & Pezzino, A. (2008). Influence of pore system characteristics on limestone vulnerability: A laboratory study. Environ Geol 54, 12711281.Google Scholar
Dessandier, D., Bromblet, P. & Mertz, J.D. (2000). Durability of Tuffeau stone in buildings: Influence of mineralogical composition and microstructural properties. In 9th Int Congress Deter Conserv Stone, Fassina, V. (Ed.), vol. 1, pp. 6978. Amsterdam, The Netherlands: Elsevier Science BV.Google Scholar
Direcção-Geral de Geologia e Minas (DGGM) (1983–1985). Catálogo de Rochas Ornamentais Portuguesas, vol. I, II, III. Lisbon, Portugal: DGGM (in Portuguese).Google Scholar
Doehne, E. (2002). Salt weathering: A selective review. In Natural Stone, Weathering Phenomena, Conservation Strategies and Case Studies, Siegesmund, S., Weiss, T. & Vollbrecht, A. (Eds.), pp. 5164. London, UK: Geological Society of London.Google Scholar
Doornkamp, J.C. & Ibrahim, H.A.M. (1990). Salt weathering. Prog Phys Geog 14, 335348.Google Scholar
Espinosa, R.M., Franke, L. & Deckelmann, G. (2008). Model for the mechanical stress due to the salt crystallization in porous materials. Constr Build Mater 22, 13501367.Google Scholar
Espinosa Marzal, R.M. & Scherer, G.W. (2008). Crystallization of sodium sulfate salts in limestone. Environ Geol 56, 605621.Google Scholar
Figueiredo, C., Folha, R., Mauricio, A., Alves, C. & Aires-Barros, L. (2010a). Contribution to the technological characterization of two widely used Portuguese dimension stones: The “Semi-rijo” and “Moca Creme” stones. In Natural Stone Resources for Historical Monuments, Prikryl, R. & Török, Á. (Eds.), pp. 153163. London, UK: Geological Society of London.Google Scholar
Figueiredo, C., Folha, R., Mauricio, A., Alves, C. & Aires-Barros, L. (2010b). Pore structure and durability of Portuguese limestones: A case study. In Limestone in the Built Environment: Present-Day Challenges for the Preservation of the Past, Smith, J., Gómez-Heras, M., Viles, H.A. & Cassar, J. (Eds.), pp. 157169. London, UK: Geological Society of London.Google Scholar
Fitzner, B., Heinrichs, K. & Volker, M. (1996). Model for salt weathering at Maltese Globigerina limestones. In Origin, Mechanisms and Effects of Salt on Degradation of Monuments in Marine and Continental Environments, Zezza, F. (Ed.), pp. 331344. Brussels, Belgium: European Commission.Google Scholar
Gatt, P.A. (2006). Model of limestone weathering and damage in masonry: Sedimentological and geotechnical controls in the Globigerina limestone formation (Miocene) of Malta. Xjenza 11, 3039.Google Scholar
Gauri, K.L. & Bandyopadhyay, J.K. (1999). Carbonate Stone: Chemical Behavior, Durability and Conservation. New York: John Wiley & Sons.Google Scholar
Goudie, A. & Viles, H. (1997). Salt Weathering Hazards. Chichester, UK: John Wiley & Sons.Google Scholar
Goudie, A.S. (1999). Experimental salt weathering of limestones in relation to rock properties. Earth Surf Proc Land 24, 715724.Google Scholar
Hammecker, C. (1995). The importance of the petrophysical properties and external factors in the stone decay on monuments. Pure Appl Geophys 145, 337361.Google Scholar
Honeyborne, D.B. (1998). Weathering and decay of masonry. In Conservation of Building and Decorative Stone, Part I, Ashurst, J. & Dimes, F.G. (Eds.), pp. 153178. Oxford, UK: Butterworth-Heinemann.Google Scholar
Instituto Geológico e Mineiro (IGM) (1995). Catálogo de Rochas Ornamentais Portuguesas, vol. IV. Lisbon, Portugal: IGM (in Portuguese).Google Scholar
Kamh, G.M.E. (2007). Environmental impact on construction limestone at humid regions with an emphasis on salt weathering, Al-hambra islamic archaeological site, Granada City, Spain: Case study. Environ Geol 52, 15391547.Google Scholar
Lewin, S.Z. (1982). The mechanism of masonry decay through crystallization. In Conservation of Historic Stone Buildings and Monuments, National Research Council Committee on Conservation of Historic Stone Buildings and Monuments (Ed.), pp. 120144. Washington, DC: National Academy Press.Google Scholar
Lucia, F.J. (2007). Carbonate Reservoir Characterization. New York: Springer-Verlag.Google Scholar
Manuppella, G., Moreira, J.C.B., Costa, J.R.G. & Crispim, J.A. (1985). Calcários e Dolomitos do Maciço Calcário Estremenho. Estudos, Notas e Trabalhos 27, 348 (in Portuguese).Google Scholar
Martínez-Martínez, J., Benavente, D., Gomez-Heras, M., Marco-Castaño, L. & García-del-Cura, M.Á. (2013). Non-linear decay of building stones during freeze–thaw weathering processes. Constr Build Mater 38, 443454.Google Scholar
McGreevy, J.P. & Smith, B.J. (1984). The possible role of clay minerals in salt weathering. Catena 11, 169175.Google Scholar
Nicholson, D.T. (2001). Pore properties as indicators of breakdown mechanisms in experimentally weathered limestones. Earth Surf Proc Land 26, 819838.CrossRefGoogle Scholar
Nijs, R. & DeGeyter, G. (1991). Local natural substitutes for weathered historical building stones in Flanders. In Science, Technology and European Cultural Heritage, Baer, N.S., Sabbioni, C. & Sors, A.I. (Eds.), pp. 671674. Oxford, UK: Butterworth Heinemann.Google Scholar
Oguchi, C.T. & Yuasa, H. (2010). Simultaneous wetting/drying, freeze/thaw and salt crystallization experiments of three types of Oya tuff. In Natural Stone Resources for Historical Monuments, Prikryl, R. & Török, Á. (Eds.), pp. 5972. London: Geological Society.Google Scholar
Pavía Santamaria, S., Cooper, T.P. & Caro Calatayud, S. (1996). Characterisation and decay of monumental sandstone in La Rioja, Northern Spain. In Processes of Urban Stone Decay, Smith, B.J. & Warke, P.A.- (Eds.), pp. 125132. London: Donhead Publishing.Google Scholar
Rodriguez-Navarro, C. & Doehne, E. (1999). Salt weathering: Influence of evaporation rate, supersaturation and crystallization pattern. Earth Surf Proc Land 24, 191209.Google Scholar
Romariz, C. (1960). Estudo Geológico e Petrográfico da Área tifónica de Soure. Comunicações dos Serviços Geológicos de Portugal, Tomo XLIV (in Portuguese). Google Scholar
Ruedrich, J., Seidel, M., Rothert, E. & Siegesmund, S. (2007). Length changes of sandstones caused by salt crystallization. In Building Stone Decay: From Diagnosis to Conservation, Přikryl, R. & Smith, B.J. (Eds.), pp. 199209. London: Geological Society of London.Google Scholar
Scherer, G.W. (1999). Crystallization in pores. Cement Concrete Res 29, 13471358.Google Scholar
Scherer, G.W. (2004). Stress from crystallization of salt. Cement Concrete Res 34, 16131624.Google Scholar
Schiavon, N. (1992). Decay mechanisms of oolitic limestones in an urban environment: King's College Chapel, Cambridge and St Luke's Church, London. In Stone Cleaning and the Nature, Soiling and Decay Mechanisms of Stone, Webster, R.G.M. (Ed.), pp. 258267. London: Donhead Publishing.Google Scholar
Siegesmund, S. & Snethlage, R. (2011). Stone in Architecture: Properties, Durability. Berlin, Germany: Springer.CrossRefGoogle Scholar
Skoulikidis, T., Kalifatidou, E., Tsakona, K. & Evangelatou, M. (1996). Salt spray tests on untreated and treated marble and stones. In Origin, Mechanisms and Effects of Salt on Degradation of Monuments in Marine and Continental Environments, Zezza, F. (Ed.), pp. 8798. Brussels, Belgium: European Commission.Google Scholar
Sobczyk, K. & Kirkner, D.J. (2001). Stochastic Modeling of Microstructures. Boston, MA: Birkhäuser.Google Scholar
Steiger, M. (2005). Crystal growth in porous materials—II: Influence of crystal size on the crystallization pressure. J Crys Growth 282, 470481.CrossRefGoogle Scholar
Van, T.T., Beck, K. & Al-Mukhtar, M. (2007). Accelerated weathering tests on two highly porous limestones. Environ Geol 52, 283292.Google Scholar
Wellman, H.W. & Wilson, A.T. (1965). Salt weathering, a neglected geological erosive agent in coastal and arid environments. Nature 205, 10971098.Google Scholar