Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T23:00:40.577Z Has data issue: false hasContentIssue false

Surface and Mechanical Characterization of Dental Yttria-Stabilized Tetragonal Zirconia Polycrystals (3Y-TZP) After Different Aging Processes

Published online by Cambridge University Press:  26 October 2016

Palena A. Pinto
Affiliation:
Faculty of Dentistry, University of Toronto, Edward Street #352E, Toronto, ON, Canada, M5G 1G6
Guillaume Colas
Affiliation:
Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road #MB115, Toronto, ON, Canada, M5S 3G8
Tobin Filleter
Affiliation:
Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road #MB115, Toronto, ON, Canada, M5S 3G8
Grace M. De Souza*
Affiliation:
Faculty of Dentistry, University of Toronto, Edward Street #352E, Toronto, ON, Canada, M5G 1G6
*
*Corresponding author. [email protected]
Get access

Abstract

Yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) is a ceramic material used in indirect dental restorations. However, phase transformation at body temperature may compromise the material’s mechanical properties, affecting the clinical performance of the restoration. The effect of mastication on 3Y-TZP aging has not been investigated. 3Y-TZP specimens (IPS E-max ZirCAD and Z5) were aged in three different modes (n=13): no aging (control), hydrothermal aging (HA), or chewing simulation (CS). Mechanical properties and surface topography were analyzed. Analysis of variance showed that neither aging protocol (p=0.692) nor material (p=0.283) or the interaction between them (p=0.216) had a significant effect on flexural strength, values ranged from 928.8 MPa (IPSHA) to 1,080.6 MPa (Z5HA). Nanoindentation analysis showed that material, aging protocol, and the interaction between them had a significant effect (p<0.001) on surface hardness and reduced Young’s modulus. The compositional analysis revealed similar yttrium content for all the experimental conditions (aging: p=0.997; material: p=0.248; interaction material×aging: p=0.720). Atomic force microscopy showed an effect of aging protocols on phase transformation, with samples submitted to CS exhibiting features compatible with maximized phase transformation, such as increased volume of the material microstructure at the surface leading to an increase in surface roughness.

Type
Biological Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ablal, M.A., Kaur, J.S., Cooper, L., Jarad, F.D., Milosevic, A., Higham, S.M. & Preston, A.J. (2009). The erosive potential of some alcopops using bovine enamel: An in vitro study. J Dent 37, 835839.Google Scholar
Aboushelib, M.N. (2013). Simulation of cumulative damage associated with long term cyclic loading using a multi-level strain accommodating loading protocol. Dent Mater 29, 252258.Google Scholar
Alghazzawi, T.F., Lemons, J., Liu, P.R., Essig, M.E., Bartolucci, A.A. & Janowski, G.M. (2012). Influence of low-temperature environmental exposure on the mechanical properties and structural stability of dental zirconia. J Prosthodont 21, 363369.Google Scholar
Bonfante, E.A., Coelho, P.G., Guess, P.C., Thompson, V.P. & Silva, N.R. (2010). Fatigue and damage accumulation of veneer porcelain pressed on Y-TZP. J Dent 38, 318324.Google Scholar
Borchers, L., Stiesch, M., Bach, F.W., Buhl, J.C., Hubsch, C., Kellner, T., Kohorst, P. & Jendras, M. (2010). Influence of hydrothermal and mechanical conditions on the strength of zirconia. Acta Biomater 6, 45474552.Google Scholar
Catledge, S.A., Cook, M., Vohra, Y.K., Santos, E.M., McClenny, M.D. & Moore, K.D. (2003). Surface crystalline phases and nanoindentation hardness of explanted zirconia femoral heads. J Mater Sci Mater Med 14, 863867.Google Scholar
Cattani-Lorente, M., Durual, S., Amez-Droz, M., Wiskott, H.W. & Scherrer, S.S. (2016). Hydrothermal degradation of a 3Y-TZP translucent dental ceramic: A comparison of numerical predictions with experimental data after 2 years of aging. Dent Mater 32, 394402.Google Scholar
Chen, X.Y., Zheng, X.H., Fang, H.S., Shi, H.Z., Wang, X.F. & Chen, H.M. (2002). The study of martensitic transformation and nanoscale surface relief in zirconia. J Mater Sci Lett 21, 415418.Google Scholar
Chevalier, J. (2006). What future for zirconia as a biomaterial? Biomaterials 27, 535543.CrossRefGoogle ScholarPubMed
Chevalier, J., Cales, B. & Drouin, J.M. (1999). Low-temperature aging of Y-TZP ceramics. J Am Ceram Soc 82, 21502154.Google Scholar
Chevalier, J., Deville, S., Munch, E., Jullian, R. & Lair, F. (2004). Critical effect of cubic phase on aging in 3 mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials 25, 55395545.Google Scholar
Chevalier, J., Gremillard, L. & Deville, S. (2007). Low-temperature degradation of zirconia and implications for biomedical implants. Annu Rev Mater Res 37, 132.Google Scholar
Chevalier, J., Gremillard, L., Virkar, A.V. & Clarke, D.R. (2009). The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends. J Am Ceram Soc 92, 19011920.Google Scholar
De Boever, J.A., McCall, W.D., Holden, S. & Ash, M.M. (1978). Functional occlusal forces – Investigation by telemetry. J Prosthet Dent 40, 326333.CrossRefGoogle ScholarPubMed
Denry, I. & Kelly, J.R. (2008). State of the art of zirconia for dental applications. Dent Mater 24, 299307.Google Scholar
Deville, S., Chevalier, J. & Gremillard, L. (2006). Influence of surface finish and residual stresses on the ageing sensitivity of biomedical grade zirconia. Biomaterials 27, 21862192.Google Scholar
Deville, S., Guenin, G. & Chevalier, J. (2004). Martensitic transformation in zirconia – Part II. Martensite growth. Acta Mater 52, 57095721.Google Scholar
Ebeid, K., Wille, S., Hamdy, A., Salah, T., El-Etreby, A. & Kern, M. (2014). Effect of changes in sintering parameters on monolithic translucent zirconia. Dent Mater 30, E419E424.Google Scholar
Egilmez, F., Ergun, G., Cekic-Nagas, I., Vallittu, P.K. & Lassila, L.V. (2014). Factors affecting the mechanical behavior of Y-TZP. J Mech Behav Biomed Mater 37, 7887.Google Scholar
Gaillard, Y., Jimenez-Pique, E., Soldera, F., Mucklich, F. & Anglada, M. (2008). Quantification of hydrothermal degradation in zirconia by nanoindentation. Acta Mater 56, 42064216.Google Scholar
Garvie, R.C. (1972). Phase analysis in zirconia systems. J Am Ceram Soc 55(6), 303305.Google Scholar
Garvie, R.C., Hannink, R.H. & Pascoe, R.T. (1975). Ceramic steel. Nature 258, 703704.Google Scholar
Guazzato, M., Albakry, M., Ringer, S.P. & Swain, M.V. (2004). Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dent Mater 20, 449456.Google Scholar
Guess, P.C., Zavanelli, R.A., Silva, N.R., Bonfante, E.A., Coelho, P.G. & Thompson, V.P. (2010). Monolithic CAD/CAM lithium disilicate versus veneered Y-TZP crowns: Comparison of failure modes and reliability after fatigue. Int J Prosthodont 23, 434442.Google Scholar
Harada, K., Shinya, A., Gomi, H., Hatano, Y., Shinya, A. & Raigrodski, A.J. (2016). Effect of accelerated aging on the fracture toughness of zirconias. J Prosthet Dent 115, 215223.CrossRefGoogle ScholarPubMed
Haraguchi, K., Sugano, N., Nishii, T., Miki, H., Oka, K. & Yoshikawa, H. (2001). Phase transformation of a zirconia ceramic head after total hip arthroplasty. J Bone Joint Surg Br 83, 9961000.CrossRefGoogle ScholarPubMed
Heuer, A.H., Claussen, N., Kriven, W.M. & Ruhle, M. (1982). Stability of tetragonal zro2 particles in ceramic matrices. J Am Ceram Soc 65, 642650.Google Scholar
Heuer, A.H., Lange, F.F., Swain, M.V. & Evans, A.G. (1986). Transformation toughening – An overview. J Am Ceram Soc 69, R1R4.Google Scholar
Hickel, R. & Manhart, J. (2001). Longevity of restorations in posterior teeth and reasons for failure. J Adhes Dent 3, 4564.Google Scholar
Ho, C.J., Liu, H.C. & Tuan, W.H. (2009). Effect of abrasive grinding on the strength of Y-TZP. J Eur Ceram Soc 29, 26632667.CrossRefGoogle Scholar
Kelly, J.R. (1999). Clinically relevant approach to failure testing of all-ceramic restorations. J Prosthet Dent 81, 652661.Google Scholar
Kelly, J.R. & Denry, I. (2008). Stabilized zirconia as a structural ceramic: An overview. Dent Mater 24, 289298.CrossRefGoogle ScholarPubMed
Keuper, M., Berthold, C. & Nickel, K.G. (2014). Long-time aging in 3 mol.% yttria-stabilized tetragonal zirconia polycrystals at human body temperature. Acta Biomater 10, 951959.Google Scholar
Keuper, M., Eder, K., Berthold, C. & Nickel, K.G. (2013). Direct evidence for continuous linear kinetics in the low-temperature degradation of Y-TZP. Acta Biomater 9, 48264835.Google Scholar
Kim, B., Zhang, Y., Pines, M. & Thompson, V.P. (2007). Fracture of porcelain-veneered structures in fatigue. J Dent Res 86, 142146.Google Scholar
Kim, H.T., Han, J.S., Yang, J.H., Lee, J.B. & Kim, S.H. (2009). The effect of low temperature aging on the mechanical property & phase stability of Y-TZP ceramics. J Adv Prosthodont 1, 113117.Google Scholar
Kim, J.W., Covel, N.S., Guess, P.C., Rekow, E.D. & Zhang, Y. (2010). Concerns of hydrothermal degradation in CAD/CAM zirconia. J Dent Res 89, 9195.Google Scholar
Kondoh, J. (2004). Origin of the hump on the left shoulder of the X-ray diffraction peaks observed in Y2O3-fully and partially stabilized ZrO2 . J Alloys Compd 375, 270282.Google Scholar
Kvam, K. & Karlsson, S. (2013). Solubility and strength of zirconia-based dental materials after artificial aging. J Prosthet Dent 110, 281287.Google Scholar
Lameira, D.P., Silva, W.A., Silva, F.A. & De Souza, G.M. (2015). Fracture strength of aged monolithic and bilayer zirconia-based crowns. Biomed Res Int 2015, 418641.Google Scholar
Lange, F.F., Dunlop, G.L. & Davis, B.I. (1986). Degradation during aging of transformation-toughened ZrO2-Y2O3 materials at 250°C. J Am Ceram Soc 69, 237240.Google Scholar
Lawson, S. (1995). Environmental degradation of zirconia ceramics. J Eur Ceram Soc 15, 485502.Google Scholar
Lughi, V. & Sergo, V. (2010). Low temperature degradation -aging- of zirconia: A critical review of the relevant aspects in dentistry. Dent Mater 26, 807820.CrossRefGoogle ScholarPubMed
Maccauro, G., Piconi, C., Burger, W., Pilloni, L., De Santis, E., Muratori, E. & Learmonth, I.D. (2004). Fracture of a Y-TZP ceramic femoral head. J Bone Joint Surg Br 86, 11921196.Google Scholar
Manicone, P.F., Iommetti, P.R. & Raffaelli, L. (2007). An overview of zirconia ceramics: Basic properties and clinical applications. J Dent 35, 819826.Google Scholar
Masonis, J.L., Bourne, R.B., Ries, M.D., Mccalden, R.W., Salehi, A. & Kelman, D.C. (2004). Zirconia femoral head fractures – A clinical and retrieval analysis. J Arthroplasty 19, 898905.Google Scholar
Monaco, C., Tucci, A., Esposito, L. & Scotti, R. (2013). Microstructural changes produced by abrading Y-TZP in presintered and sintered conditions. J Dent 41, 121126.Google Scholar
Munoz-Tabares, J.A., Jimenez-Pique, E., Reyes-Gasga, J. & Anglada, M. (2011). Microstructural changes in ground 3Y-TZP and their effect on mechanical properties. Acta Mater 59, 66706683.CrossRefGoogle Scholar
Papanagiotou, H.P., Morgano, S.M., Giordano, R.A. & Pober, R. (2006). In vitro evaluation of low-temperature aging effects and finishing procedures on the flexural strength and structural stability of Y-TZP dental ceramics. J Prosthet Dent 96, 154164.Google Scholar
Perdigao, J., Pinto, A.M., Monteiro, R.C.C., Fernandes, F.M.B., Laranjeira, P. & Veiga, J.P. (2012). Degradation of dental ZrO2-based materials after hydrothermal fatigue. Part I: XRD, XRF, and FESEM analyses. Dent Mater J 31, 256265.Google ScholarPubMed
Piconi, C. & Maccauro, G. (1999). Zirconia as a ceramic biomaterial. Biomaterials 20, 125.Google Scholar
Ramos, G.F., Monteiro, E.B.C., Bottino, M.A., Zhang, Y. & De Melo, R.M. (2015). Failure probability of three designs of zirconia crowns. Int J Periodontics Restorative Dent 35, 843849.Google Scholar
Roebben, G., Basu, B., Vleugels, J. & Van Der Biest, O. (2003). Transformation-induced damping behaviour of Y-TZP zirconia ceramics. J Eur Ceram Soc 23, 481489.Google Scholar
Steiner, M., Mitsias, M.E., Ludwig, K. & Kern, M. (2009). In vitro evaluation of a mechanical testing chewing simulator. Dent Mater 25, 494499.Google Scholar
Studart, A.R., Filser, F., Kocher, P. & Gauckler, L.J. (2007). In vitro lifetime of dental ceramics under cyclic loading in water. Biomaterials 28, 26952705.Google Scholar
Swab, J.J. (1991). Low-temperature degradation of Y-TZP materials. J Mater Sci 26, 67066714.Google Scholar
Teixeira, E.C., Piascik, J.R., Stoner, B.R. & Thompson, J.Y. (2007). Dynamic fatigue and strength characterization of three ceramic materials. J Mater Sci Mater Med 18(6), 12191224.Google Scholar
Wiskott, H.W., Nicholls, J.I. & Belser, U.C. (1995). Stress fatigue: Basic principles and prosthodontic implications. Int J Prosthodont 8, 105116.Google Scholar