Published online by Cambridge University Press: 02 July 2020
Thermal spray processing has become an important powder-consolidation technique to yield new materials for extremes of temperature, radiation, wear, corrosion and mechanical stresses. High Velocity Oxy-Fuel (HVOF) spray coating process gives higher deposition densities and coating hardness; lower oxide content and porosity. The adhesive strength of thermal spray coatings is greatly effected by the interfacial impurities. The ring shear test method shown in Fig. 1 appears to give the most accurate results on shear adhesive strength. A typical ring shear test result of 88WC12Co 1/4" ring HVOF thermal spray coating on 4140 steel rod using a Jet kote thermal spray gun is shown in Fig. 2. Repeated ring shear tests on similar samples prepared under same spray and test conditions resulted in different shear bond strength and coating ring displacement before break off. We examined the ring shear tested coatings using a Zeiss DMS942 Scanning Electron Microscope (SEM) and Kevex Energy Dispersive X-ray Spectrometer (EDXS) with LPX1 Quantum Si(Li) Detector.