Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T13:08:59.436Z Has data issue: false hasContentIssue false

Studying Subnuclear Dynamics in Living Cells

Published online by Cambridge University Press:  02 July 2020

David L. Spector*
Affiliation:
Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York, 11724U.S.A
Get access

Extract

Green fluorescent protein (GFP) and its variants have become powerful tools with which to study the dynamics of many fundamental processes in living cells. I will first discuss the advantages of GFP and important parameters that one must consider in performing live-cell microscopy experiments including how to keep cells happy on the microscope stage. I will then go on to discuss work from our laboratory using multiple microscopic approaches to address questions related to gene expression.

Many of the basic processes that are essential for normal cell growth and division are regulated in the nucleus, ie. DNA replication, transcription, RNA processing and transport. The organization of these functions in the nucleus must be highly controlled in order to enable cells and/or the entire organism to function properly. However, relatively little has been known about the relationship of nuclear organization to gene expression.

Type
Recent Advances in Light Microscopy
Copyright
Copyright © Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

1.Lamond, A.I. and Earnshaw, W.C.. Science 280(1998)547.CrossRefGoogle Scholar
2.Spector, D.L.. Annu. Rev. Cell Biol. 9(1993)265.CrossRefGoogle Scholar
3.Monneron, A. and Bernhard, W.. J. Ultrastruct. Res. 27(1969)266.CrossRefGoogle Scholar
4.Fakan, S. and Bernhard, W.. Exp. Cell Res. 67(1971)129.CrossRefGoogle Scholar
5.Jackson, D.A. et al. EMBO. J. 12(1993)1059.CrossRefGoogle Scholar
6.Spector, D.L.. Proc. Natl. Acad. Sci. U.S.A. 87(1990)147.Google Scholar
7.Wansink, D.G. et al. J. Cell Biol. 122(1993)283.CrossRefGoogle Scholar
8.Fakan, S.. Trends Cell Biol. 4(1994)86.CrossRefGoogle Scholar
9.Bauren, G. and Wieslander, L.. Cell 76(1994)183.CrossRefGoogle Scholar
10.Beyer, A.L. and Osheim, Y.N.. Genes Dev. 2(1988)754.CrossRefGoogle Scholar
11.Dirks, R.W. et al. J. Cell Sci. 110(1997)505.Google Scholar
12.Iborra, F.J. et al. J. Cell Sci. 109(1996)1427.Google Scholar
13.Neugebauer, K.M. and M.B. Roth. Genes & Dev. 11(1997)1148.CrossRefGoogle Scholar
14.Xing, Y. et al. J. Cell Biol. 131(1995)1635.CrossRefGoogle Scholar
15.Zengetal, C.. EMBO J. 16(1997)1401.Google Scholar
16.Zhang, G. et al. Nature. 372(1994)809.CrossRefGoogle Scholar
17.Huang, S. and Spector, D.L.. Genes & Dev. 5(1991)2288.CrossRefGoogle Scholar
18.Jimenez-Garciaand, L.F.Spector, D.L.. Cell 73(1993)47.CrossRefGoogle Scholar
19.Bridge, E. et al. J. Virol. 69(1995)281.CrossRefGoogle Scholar
20.Bauren, G. et al. J. Cell Biol. 133(1996)929.CrossRefGoogle Scholar
21.Richler, C. et al. Mol. Biol. Cell. 5(1994)1341.CrossRefGoogle Scholar
22.Misteli, T. et al. Nature 387(1997)523.CrossRefGoogle Scholar
23.Misteli, T. and Spector, D.L.. Curr. Opin. Cell Biol. 10(1998)323.CrossRefGoogle Scholar
24.Huang, S. and Spector, D.L.. J. Cell Biol. 131(1996)719.CrossRefGoogle Scholar