Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T04:57:39.010Z Has data issue: false hasContentIssue false

Site-Specific Preparation of Intact Solid–Liquid Interfaces by Label-Free In Situ Localization and Cryo-Focused Ion Beam Lift-Out

Published online by Cambridge University Press:  21 November 2016

Michael J. Zachman
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
Emily Asenath-Smith
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
Lara A. Estroff
Affiliation:
Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
Lena F. Kourkoutis*
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
*
*Corresponding author.[email protected]
Get access

Abstract

Scanning transmission electron microscopy (STEM) allows atomic scale characterization of solid–solid interfaces, but has seen limited applications to solid–liquid interfaces due to the volatility of liquids in the microscope vacuum. Although cryo-electron microscopy is routinely used to characterize hydrated samples stabilized by rapid freezing, sample thinning is required to access the internal interfaces of thicker specimens. Here, we adapt cryo-focused ion beam (FIB) “lift-out,” a technique recently developed for biological specimens, to prepare intact internal solid–liquid interfaces for high-resolution structural and chemical analysis by cryo-STEM. To guide the milling process we introduce a label-free in situ method of localizing subsurface structures in suitable materials by energy dispersive X-ray spectroscopy (EDX). Monte Carlo simulations are performed to evaluate the depth-probing capability of the technique, and show good qualitative agreement with experiment. We also detail procedures to produce homogeneously thin lamellae, which enable nanoscale structural, elemental, and chemical analysis of intact solid–liquid interfaces by analytical cryo-STEM. This work demonstrates the potential of cryo-FIB lift-out and cryo-STEM for understanding physical and chemical processes at solid–liquid interfaces.

Type
Instrumentation and Software Techniques
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

B90 Physical Sciences Building, Cornell University, 245 East Avenue, Ithaca, NY 14853, USA.

US Army Engineer Research & Development Center (ERDC), Cold Regions Research & Engineering Laboratory (CRREL), 72 Lyme Road, Hanover, NH 03755, USA.

§

329 Bard Hall, Cornell University, Ithaca, NY 14853, USA.

235 Clark Hall, Cornell University, Ithaca, NY 14853, USA.

References

Agronskaia, A.V., Valentijn, J.A., van Driel, L.F., Schneijdenberg, C.T.W.M., Humbel, B.M., van Bergen en Henegouwen, P.M.P., Verkleij, A.J., Koster, A.J. & Gerritsen, H.C. (2008). Integrated fluorescence and transmission electron microscopy. J Struct Biol 164, 183189.CrossRefGoogle ScholarPubMed
Al-Amoudi, A., Norlen, L.P.O. & Dubochet, J. (2004). Cryo-electron microcopy of vitreous sections of native biological cells and tissues. J Struct Biol 148, 131135.CrossRefGoogle Scholar
Al-Amoudi, A., Studer, D. & Dubochet, J. (2005). Cutting artefacts and cutting process in vitreous sections for cryo-electron microscopy. J Struct Biol 150, 109121.Google Scholar
Anderson, C.A. & Hasler, M.F. (1966). Extension of electron microprobe techniques to biochemistry by the use of long wavelength X-rays. In Proceedings of the Fourth International Conference on X-Ray Optics and Microanalysis, Castaing, R., Deschamps, P. & Philibert, J. (Eds.), pp. 310327. Paris: Hermann.Google Scholar
Antoniou, N., Graham, A., Hartfield, C. & Amador, G. (2012). Failure analysis of electronic material using cryogenic FIB-SEM. ISTFA 2012: Conference Proceedings from the 38th International Symposium for Testing and Failure Analysis, Nov. 11-15, Phoenix Arizona, USA, pp. 399–405.CrossRefGoogle Scholar
Arnold, J., Mahamid, J, Vladan, L., de Marco, A., Fernandez, J.-J., Laugks, T., Mayer, T., Hyman, A.A., Baunmeister, W. & Plitzko, J.M. (2016). Site-specific cryofocused ion beam sample preparation guided by 3D correlative microscopy. Biophys J 110, 860869.CrossRefGoogle ScholarPubMed
Asenath-Smith, E., Hovden, R., Kourkoutis, L.F. & Estroff, L.A. (2015). Hierarchically structured hematite architectures achieved by growth in a silica hydrogel. J Am Chem Soc 137, 51845192.Google Scholar
Asenath-Smith, E., Li, H.Y., Keene, E.C., Seh, Z.W. & Estroff, L.A. (2012). Crystal growth of calcium carbonate in hydrogels as a model of biomineralization. Adv Funct Mater 22(14), 28912914.CrossRefGoogle Scholar
Asenath-Smith, E. & Estroff, L.A. (2015). Role of akaganeite (β-FeOOH) in the growth of hematite (α-Fe2O3) in an inorganic silica hydrogel. Cryst Growth Des 15, 33883398.Google Scholar
Blesa, M.A. & Matijević, E. (1989). Phase transformations of iron oxides, oxohydroxides, and hydrous oxides in aqueous media. Adv Colloid Interface Sci 29, 173221.Google Scholar
Botton, G.A. (2012). Probing bonding and electronic structure at atomic resolution with spectroscopic imaging. MRS Bull 37, 2128.Google Scholar
Chen, S.-Y., Gloter, A., Zobelli, A., Wang, L., Chen, C.-H. & Colliex, C. (2009). Electron energy loss spectroscopy and ab initio investigation of iron oxide nanomaterials grown by a hydrothermal process. Phys Rev B 79, 104103.Google Scholar
Cheng, Y., Grigorieff, N., Penczek, P.A. & Walz, T. (2015). A primer to single-particle cryo-electron microscopy. Cell 161, 438449.Google Scholar
Dubochet, J., Adrian, M., Chang, J.-J., Homo, J.C., Lepault, J., McDowall, A.W. & Schultz, P. (1988). Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21(2), 129228.CrossRefGoogle ScholarPubMed
Echlin, P. (1992). Low-Temperature Microscopy and Analysis. New York, NY: Plenum Press.Google Scholar
Egerton, R.F., Li, P. & Malac, M. (2004). Radiation damage in the TEM and SEM. Micron 35, 399409.Google Scholar
Faas, F.G.A., Bárcena, M., Agronskaia, A.V., Gerritsen, H.C., Moscicka, K.B., Diebolder, C.A., van Driel, L.F., Limpens, R.W.A.L., Bos, E., Ravelli, R.B.G., Koning, R.I. & Koster, A.J. (2013). Localization of fluorescently labeled structures in frozen-hydrated samples using integrated light electron microscopy. J Struct Biol 181, 283290.CrossRefGoogle ScholarPubMed
Garvie, L.A.J. (2010). Can electron energy-loss spectroscopy (EELS) be used to quantify hydrogen in minerals from the O K edge? Am Mineral 95, 9297.Google Scholar
Gauvin, R. & Michaud, P. (2009). MC X-ray, a new Monte Carlo program for quantitative X-ray microanalysis of real materials. Microsc Microanal 15(Suppl 2), 488489.Google Scholar
Giannuzzi, L.A. & Stevie, F.A. (2005). Introduction to Focused Ion Beams – Instrumentation, Theory, Techniques and Practice. New York, NY: Springer Science+Business Media Inc.Google Scholar
Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., Sawyer, L. & Michael, J. (2003). Scanning Electron Microscopy and X-Ray Microanalysis – Third Edition. New York, NY: Springer Science+Business Media, LLC.Google Scholar
Goodenough, J.B. & Kim, Y. (2010). Challenges for rechargeable Li batteries. Chem Mater 22, 587603.Google Scholar
Hayles, M.F., de Winter, D.A.M., Schneijdenberg, C.T.W.M., Meeldijk, J.D., Luecken, U., Persoon, H., de Water, J., de Jong, F., Humbel, B.M. & Verkleij, A.J. (2010). The making of frozen-hydrated, vitreous lamellas from cells for cryo-electron microscopy. J Struct Biol 172, 180190.Google Scholar
Heinrich, K.F., Newbury, D.E. & Yakowitz, H. (Eds.) (1976). Use of Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy: Proceedings of a Workshop held at the National Bureau of Standards, Gaithersburg, Maryland, October 1-3, 1975 (No. 460). US Department of Commerce, National Bureau of Standards: for sale by the Supt. of Docs., US Govt. Print. Off., Washington, DC.Google Scholar
Henderson, R. (1995). The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q Rev Biophys 28(2), 171193.Google Scholar
Henisch, H. (1988). Crystals in Gels and Liesegang Rings. New York, NY: Cambridge University Press.Google Scholar
Hovington, P., Drouin, D. & Gauvin, R. (1997). CASINO: A new Monte Carlo in C Language for electron beam interaction-part I: Description of the program. Scanning 19, 114.Google Scholar
Kanaya, K. & Okayama, S. (1972). Penetration and energy-loss theory of electrons in solid targets. J Phys D Appl Phys 5, 4358.Google Scholar
Kourkoutis, L.F., Plitzko, J.M. & Baumeister, W. (2012). Electron microscopy of biological materials at the nanometer scale. Annu Rev Mater Res 42, 3358.CrossRefGoogle Scholar
Kukulski, W., Schorb, M., Welsch, S., Picco, A., Kaksonen, M. & Briggs, J.A.G. (2011). Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J Cell Biol 192(1), 111119.Google Scholar
Lučić, V., Rigort, A. & Baumeister, W. (2013). Cryo-electron tomography: The challenge of doing structural biology in situ. J Cell Biol 202(3), 407419.CrossRefGoogle ScholarPubMed
Mahamid, J., Schampers, R., Persoon, H., Hyman, A.A., Baumeister, W. & Plitzko, J.M. (2015). A focused ion beam milling and lift-out approach for site-specific preparation of frozen-hydrated lamellas from multicellular organisms. J Struct Biol 192, 262269.Google Scholar
Marko, M., Hsieh, C., Moberlychan, W., Mannella, C.A. & Frank, J. (2006 a). Focused ion beam milling of vitreous water: prospects for an alternative to cryo-ultramicrotomy of frozen-hydrated biological samples. J Microsc 222(1), 4247.Google Scholar
Marko, M., Hsieh, C., Schalek, R., Frank, J. & Mannella, C. (2007). Focused-ion-beam thinning of frozen-hydrated specimens for cryo-electron microscopy. Nat Methods 4(3), 215217.Google Scholar
Marko, M., Hsieh, C.-E., Shalek, R., Ting, C.S., Manella, C.A. & Frank, J. (2006 b). Focused ion beam (FIB) preparation methods for 3-D biological cryo-TEM. Microsc Microanal 12(Suppl 2), 9899.Google Scholar
McDowall, A.W., Chang, J.-J., Freeman, R., Lepault, J., Walter, C.A. & Dubochet, J. (1983). Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples. J Microsc 131(1), 19.Google Scholar
Milne, J.L.S., Borgnia, M.J., Bartesaghi, A., Tran, E.E.H., Earl, L.A., Schauder, D.M., Lengyel, J., Pierson, J., Patwardhan, A. & Subramanium, S. (2012). Cryo-electron microscopy – a primer for the non-microscopist. FEBS J 280, 2845.Google Scholar
Muller, D.A. (2009). Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat Mater 8, 263270.CrossRefGoogle ScholarPubMed
Müller, S.A., Aebi, U. & Engel, A. (2008). What transmission electron microscopes can visualize now and in the future. J Struct Biol 163, 235245.CrossRefGoogle ScholarPubMed
Mundy, J.A., Hikita, Y., Hidaka, T., Yajima, T., Higuchi, T., Hwang, H.Y., Muller, D.A. & Kourkoutis, L.F. (2014). Visualizing the interfacial evolution from charge compensation to metallic screening across the manganite metal-insulator transition. Nat Commun 5, 3464.Google Scholar
Parmenter, C., Fay, M., Hartfield, C., Amador, G. & Moldovan, G. (2014). Cryogenic FIB lift-out as a preparation method for damage-free soft matter TEM imaging. Microsc Microanal 20(Suppl 3), 12241225.Google Scholar
Parmenter, C.D.J., Fay, M.W., Hartfield, C. & Eltaher, H.M. (2016). Making the practically impossible ‘Merely Difficult’ – cryogenic FIB lift-out for ‘Damage-Free’ soft mattering imaging. Microsc Res Tech 79, 298303.Google Scholar
Plitzko, J.M., Rigort, A. & Leis, A. (2009). Correlative cryo-light microscopy and cryo-electron tomography: From cellular territories to molecular landscapes. Curr Opin Biotechnol 20, 8389.Google Scholar
Reimer, L. (1998). Scanning Electron Microscopy – Physics of Image Formation and Microanalysis. Berlin Heidelberg: Springer-Verlag.Google Scholar
Rigort, A., Bäuerlein, F.J.B., Leis, A., Gruska, M., Hoffmann, C., Laugks, T., Böhm, U., Eibauer, M., Gnaegi, H., Baumeister, W. & Plitzko, J.M. (2010). Micromachining tool and correlative approaches for cellular cryo-electron tomography. J Struct Biol 172, 169179.Google Scholar
Rigort, A., Bäuerlein, F.J.B., Villa, E., Eibauer, M., Laugks, T., Baumeister, W. & Plitzko, J.M. (2012). Foces ion beam micromachining of eukaryotic cells for cryoelectron tomography. Proc Natl Acad Sci USA 109(12), 44494454.Google Scholar
Rubino, S., Akhtar, S., Melin, P., Searle, A., Spellward, P. & Leifer, K. (2012). A site-specific focused-ion-beam lift-out method for cryo transmission electron microscopy. J Struct Biol 180, 572576.Google Scholar
Sartori, A., Gatz, R., Beck, F., Rigort, A., Baumeister, W. & Plitzko, J.M. (2007). Correlative microscopy: Bridging the gap between fluorescence light microscopy and cryo-electron tomography. J Struct Biol 160, 135145.CrossRefGoogle Scholar
Schellenberger, P., Kaufmann, R., Siebert, C.A., Hagen, C., Wodrich, H & Grünewald, K. (2014). High-precision correlating fluorescence and electron cryo microscopy using two independent alignment markers. Ultramicroscopy 143, 4151.Google Scholar
Schorb, M. & Briggs, J.A.G. (2014). Correlated cryo-fluorescence and cryo-electron microscopy with spatial precision and improved sensitivity. Ultramicroscopy 143, 2432.Google Scholar
Schwartz, C.L., Sarbash, V.I., Ataullakhanov, F.I., McIntosh, J.R. & Nicastro, D. (2007). Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching. J Microsc 227(2), 98109.Google Scholar
Stark, T.J., Shedd, G.M., Vitarelli, J., Griffis, D.P. & Russell, P.E. (1995). H2O enhanced focused ion beam micromachining. J Vac Sci Technol B 13, 25652569.Google Scholar
Studer, D., Michel, M., Wohlwend, M., Hunziker, E.B. & Buschmann, M.D. (1995). Vitrification of articular cartilage by high-pressure freezing. J Microsc 179(3), 321332.Google Scholar
Tarascon, J.-M. & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature 414, 359367.Google Scholar
van Driel, L.F., Valentijn, J.A., Valentijn, K.M., Koning, R.I. & Koster, A.J. (2009). Tools for correlative cryo-fluorescence microscopy and cryo-electron tomography applied to whole mitochondria in human endothelial cells. Eur J Cell Biol 88, 669684.Google Scholar
Villa, E., Schaffer, M., Plitzko, J.M. & Baumeister, W. (2013). Opening windows into the cell: Focused-ion-beam milling for cryo-electron tomography. Curr Opin Struct Biol 23, 771777.Google Scholar
Vulović, M., Ravelli, R.G.B., van Vliet, L.J., Koster, A., Lazić, I., Lücken, U., Rullgård, H., Öktem, O. & Rieger, B. (2013). Image formation modeling in cryo-electron microscopy. J Struct Biol 183, 1932.Google Scholar
Weiner, S. & Addadi, L. (2011). Crystallization pathways in biomineralization. Ann Rev Mater Res 41, 2140.Google Scholar
Yan, R., Edwards, T.J., Pankratz, L.M., Kuhn, R.J., Lanman, J.K., Liu, J. & Jiang, W. (2015). Simultaneous determination of sample thickness, tilt, and electron mean free path using tomographic tilt images based on Beer-Lambert law. J Struct Biol 192, 287296.Google Scholar
Zachman, M.J., Asenath-Smith, E., Estroff, L.A. & Kourkoutis, L.F. (2015). Revealing the internal structure and local chemistry of nanocrystals grown in hydrogel with cryo-FIB lift-out and cryo-STEM. Microsc Microanal 21(Suppl 3), 22912292.CrossRefGoogle Scholar