Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T00:02:28.591Z Has data issue: false hasContentIssue false

Single Atom Microscopy

Published online by Cambridge University Press:  12 November 2012

Wu Zhou*
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
Mark P. Oxley
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
Andrew R. Lupini
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
Ondrej L. Krivanek
Affiliation:
Nion Co., 1102 8th St., Kirkland, WA 98033, USA
Stephen J. Pennycook
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
Juan-Carlos Idrobo*
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
*
*Corresponding author. E-mail: [email protected]
**Corresponding author. E-mail: [email protected]
Get access

Abstract

We show that aberration-corrected scanning transmission electron microscopy operating at low accelerating voltages is able to analyze, simultaneously and with single atom resolution and sensitivity, the local atomic configuration, chemical identities, and optical response at point defect sites in monolayer graphene. Sequential fast-scan annular dark-field (ADF) imaging provides direct visualization of point defect diffusion within the graphene lattice, with all atoms clearly resolved and identified via quantitative image analysis. Summing multiple ADF frames of stationary defects produce images with minimized statistical noise and reduced distortions of atomic positions. Electron energy-loss spectrum imaging of single atoms allows the delocalization of inelastic scattering to be quantified, and full quantum mechanical calculations are able to describe the delocalization effect with good accuracy. These capabilities open new opportunities to probe the defect structure, defect dynamics, and local optical properties in 2D materials with single atom sensitivity.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J.E., Hemesath, E.R., Perea, D.E., Lensch-Falk, J.L., Li, Z.Y., Yin, F., Gass, M.H., Wang, P., Bleloch, A.L., Palmer, R.E. & Lauhon, L.J. (2008). High-resolution detection of Au catalyst atoms in Si nanowires. Nat Nanotechnol 3, 168173.CrossRefGoogle ScholarPubMed
Allen, L.J. & Josefsson, T.J. (1995). Inelastic scattering of fast electrons by crystals. Phys Rev B 52, 31843196.Google Scholar
Archard, G.D. (1955). Two new simplified systems for the correction of spherical aberration in electron lenses. Proc Phys Soc B 68, 156164.Google Scholar
Batson, P.E., Dellby, N. & Krivanek, O.L. (2002). Sub-angstrom resolution using aberration corrected electron optics. Nature 418, 617620.Google Scholar
Berger, C., Song, Z.M., Li, T.B., Li, X.B., Ogbazghi, A.Y., Feng, R., Dai, Z.T., Marchenkov, A.N., Conrad, E.H., First, P.N. & de Heer, W.A. (2004). Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108, 1991219916.CrossRefGoogle Scholar
Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. (1983). 7 × 7 Reconstruction on Si(111) resolved in real space. Phys Rev Lett 50, 120123.Google Scholar
Borisevich, A.Y., Lupini, A.R. & Pennycook, S.J. (2006). Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc Natl Acad Sci USA 103, 30443048.CrossRefGoogle ScholarPubMed
Bosman, M., Keast, V.J., Watanabe, M., Maaroof, A.I. & Cortie, M.B. (2007). Mapping surface plasmons at the nanometre scale with an electron beam. Nanotechnology 18, 165505. CrossRefGoogle Scholar
Browning, N.D., Arslan, I., Erni, R. & Reed, B.W. (2011). Low-loss EELS in the STEM. In Scanning Transmission Electron Microscopy: Imaging and Analysis, Pennycook, S.J. & Nellist, P.D. (Eds.), pp. 659688. New York: Springer.CrossRefGoogle Scholar
Crewe, A.V. (2009). The work of Albert Victor Crewe on the scanning transmission electron microscope and related topics. In Advances in Imaging and Electron Physics: Cold Field Emission and the Scanning Transmission Electron Microscope, Hawkes, P.W. (Ed.), pp. 161. San Diego, CA: Academic Press.Google Scholar
Crewe, A.V., Wall, J. & Langmore, J. (1970). Visibility of single atoms. Science 168, 13381340.Google Scholar
Deltrap, J.H.M. (1964). Correction of spherical aberration with combined quadrupole-octopole units. 3rd European Conference on Electron Microscopy, Prague, Czech Republic, pp. 45–46. Czechoslovak Academy of Sciences. Google Scholar
Egerton, R.F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscopy. New York: Springer.CrossRefGoogle Scholar
Erni, R. & Browning, N.D. (2005). Valence electron energy-loss spectroscopy in monochromated scanning transmission electron microscopy. Ultramicroscopy 104, 176192.Google Scholar
Erni, R., Rossell, M.D., Kisielowski, C. & Dahmen, U. (2009). Atomic-resolution imaging with a sub-50-pm electron probe. Phys Rev Lett 102, 096101. Google Scholar
Guiton, B.S., Iberi, V., Li, S., Leonard, D.N., Parish, C.M., Kotula, P.G., Varela, M., Schatz, G.C., Pennycook, S.J. & Camden, J.P. (2011). Correlated optical measurements and plasmon mapping of silver nanorods. Nano Lett 11, 34823488.Google Scholar
Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B. & Urban, K. (1998a). A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75, 5360.Google Scholar
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B. & Urban, K. (1998b). Electron microscopy image enhanced. Nature 392, 768769.Google Scholar
Herzing, A.A., Kiely, C.J., Carley, A.F., Landon, P. & Hutchings, G.J. (2008). Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321, 13311335.Google Scholar
Iijima, S. (1977). Observation of single and clusters of atoms in bright field electron-microscopy. Optik 48, 193214.Google Scholar
Isaacson, M., Kopf, D., Utlaut, M., Parker, N.W. & Crewe, A.V. (1977). Direct observations of atomic diffusion by scanning transmission electron microscopy. Proc Natl Acad Sci USA 74, 18021806.Google Scholar
Isaacson, M., Ohtsuki, M. & Utlaut, M. (1979). Can we determine the structure of thin amorphous film using scanning transmission electron microscopy? Proceeding of the 37th Annual EMSA Meeting, San Antonio, TX, pp. 498–501. Electron Microscopy Society of America. Google Scholar
Koch, C.T. (2002). Determination of core structure periodicity and point defect density along dislocations. PhD Thesis. Pheonix, AZ: Arizona State University. Google Scholar
Krivanek, O.L., Chisholm, M.F., Dellby, N. & Murfitt, M.E. (2011). Atomic-resolution STEM at low primary energies. In Scanning Transmission Electron Microsocpy: Imaging and Analysis, Pennycook, S.J. & Nellist, P.D. (Eds.), pp. 615658. New York: Springer.CrossRefGoogle Scholar
Krivanek, O.L., Chisholm, M.F., Nicolosi, V., Pennycook, T.J., Corbin, G.J., Dellby, N., Murfitt, M.F., Own, C.S., Szilagyi, Z.S., Oxley, M.P., Pantelides, S.T. & Pennycook, S.J. (2010a). Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571574.CrossRefGoogle ScholarPubMed
Krivanek, O.L., Corbin, G.J., Dellby, N., Elston, B.F., Keyse, R.J., Murfitt, M.F., Own, C.S., Szilagyi, Z.S. & Woodruff, J.W. (2008a). An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179195.CrossRefGoogle ScholarPubMed
Krivanek, O.L., Dellby, N. & Lupini, A.R. (1999). Towards sub-angstrom electron beams. Ultramicroscopy 78, 111.Google Scholar
Krivanek, O.L., Dellby, N. & Murfitt, M.F. (2008b). Aberration correction in electron microscopy. In Handbook of Charged Particle Optics, Orloff, J. (Eds.), pp. 601640. Boca Raton, FL: CRC Press.Google Scholar
Krivanek, O.L., Dellby, N., Murfitt, M.F., Chrisholm, M.F., Pennycook, T.J., Suenaga, K. & Nicolosi, V. (2010b). Gentle STEM: ADF imaging and EELS at low primary energies. Ultramicroscopy 110, 935945.Google Scholar
Krivanek, O.L., Dellby, N., Spence, A.J., Camps, R.A. & Brown, L.M. (1997). Aberration correction in the STEM. IoP Conference Series No. 153, pp. 35–40. Institute of Physics. Google Scholar
Krivanek, O.L., Zhou, W., Chisholm, M.F., Dellby, N., Lovejoy, T.C., Ramasse, Q.M. & Idrobo, J.C. (2013). Gentle STEM of single atoms: Low keV imaging and analysis at ultimate detection limits. In Low Voltage Electron Microscopy: Principles and Applications, Bell, D. & Erdman, N. (Eds.), pp. 119161. London: John Wiley & Sons.Google Scholar
Langmore, J.P., Isaacson, M.S. & Crewe, A.V. (1974). The study of single heavy atom motion in the STEM. Proceeding of the 32nd Annual EMSA Meeting, St. Louis, MO, pp. 378–379. Electron Microscopy Society of America. Google Scholar
Li, Y., Zhou, W., Wang, H., Xie, L., Liang, Y., Wei, F., Idrobo, J.C., Pennycook, S.J. & Dai, H. (2012). An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat Nanotechnol 7, 394400.Google Scholar
Lovejoy, T.C., Ramasse, Q.M., Falke, M., Kaeppel, A., Terborg, R., Zan, R., Dellby, N. & Krivanek, O.L. (2012). Single atom identification by energy dispersive X-ray spectroscopy. Appl Phys Lett 100, 154101. Google Scholar
Lupini, A.R. & Pennycook, S.J. (2003). Localization in elastic and inelastic scattering. Ultramicroscopy 96, 313322.Google Scholar
Möllenstedt, G. (1956). Elektronenmikroskopische Bilder mit einem nach O. Scherzer sphärisch korrigiertem Objektiv. Optik 13, 209215.Google Scholar
Mory, C., Kohl, H., Tence, M. & Colliex, C. (1991). Experimental investigation of the ultimate EELS spatial resolution. Ultramicroscopy 37, 191201.Google Scholar
Muller, D.A., Kourkoutis, L.F., Murfitt, M., Song, J.H., Hwang, H.Y., Silcox, J., Dellby, N. & Krivanek, O.L. (2008). Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 10731076.Google Scholar
Müller, E.W. (1956). Resolution of the atomic structure of a metal surface by the field ion microscope. J Appl Phys 27, 474476.CrossRefGoogle Scholar
Nelayah, J., Kociak, M., Stephan, O., Garcia de Abajo, F.J., Tence, M., Henrard, L., Taverna, D., Pastoriza-Santos, I., Liz-Marzan, L.M. & Colliex, C. (2007). Mapping surface plasmons on a single metallic nanoparticle. Nat Phys 3, 348353.Google Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. & Firsov, A.A. (2004). Electric field effect in atomically thin carbon films. Science 306, 666669.Google Scholar
Oh, S.H., van Benthem, K., Molina, S.I., Borisevich, A.Y., Luo, W., Werner, P., Zakharov, N.D., Kurnar, D., Pantelides, S.T. & Pennycook, S.J. (2008). Point defect configurations of supersaturated Au atoms inside Si nanowires. Nano Lett 8, 10161019.Google Scholar
Ortalan, V., Uzun, A., Gates, B.C. & Browning, N.D. (2010). Direct imaging of single metal atoms and clusters in the pores of dealuminated HY zeolite. Nat Nanotechnol 5, 506510.Google Scholar
Oxley, M.P. & Allen, L.J. (1998). Delocalization of the effective interaction for inner-shell ionization in crystals. Phys Rev B 57, 32733282.CrossRefGoogle Scholar
Pennycook, S.J. (2011). A scan through the history of STEM. In Scanning Transmission Electron Microscopy: Imaging and Analysis, Pennycook, S.J. & Nellist, P.D. (Eds.), pp. 190. New York: Springer.Google Scholar
Retsky, M. (1974). Observed single atom elastic cross-sections in a scanning electron-microscope. Optik 41, 127142.Google Scholar
Rossouw, D., Couillard, M., Vickery, J., Kumacheva, E. & Botton, G.A. (2011). Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe. Nano Lett 11, 14991504.Google Scholar
Saito, M., Kimoto, K., Nagai, T., Fukushima, S., Akahoshi, D., Kuwahara, H., Matsui, Y. & Ishizuka, K. (2009). Local crystal structure analysis with 10-pm accuracy using scanning transmission electron microscopy. J Electron Microsc 58, 131136.Google Scholar
Scherzer, O. (1936). Uber einige Fehler von Elektronenlinsen. Z Phys 101, 114132.Google Scholar
Scherzer, O. (1947). Sphärische und chromatische Korrektur von Elektronenlinsen. Optik 2, 114132.Google Scholar
Schiff, L.I. (1942). Ultimate resolving power of the electron microscope. Phys Rev 61, 721722.CrossRefGoogle Scholar
Seeliger, R. (1953). Über die justierung sphärisch korrigierter elektronenoptischer systeme. Optik 10, 2941.Google Scholar
Suenaga, K. & Koshino, M. (2010). Atom-by-atom spectroscopy at graphene edge. Nature 468, 10881090.Google Scholar
Suenaga, K., Sato, Y., Liu, Z., Kataura, H., Okazaki, T., Kimoto, K., Sawada, H., Sasaki, T., Omoto, K., Tomita, T., Kaneyama, T. & Kondo, Y. (2009). Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage. Nat Chem 1, 415418.Google Scholar
Suenaga, K., Tence, T., Mory, C., Colliex, C., Kato, H., Okazaki, T., Shinohara, H., Hirahara, K., Bandow, S. & Iijima, S. (2000). Element-selective single atom imaging. Science 290, 22802282.Google Scholar
Treacy, M.M.J. (2011). Z dependence of electron scattering by single atoms into annular dark-field detectors. Microsc Microanal 17, 847858.Google Scholar
van Benthem, K., Lupini, A.R., Kim, M., Baik, H.S., Doh, S., Lee, J.H., Oxley, M.P., Findlay, S.D., Allen, L.J., Luck, J.T. & Pennycook, S.J. (2005). Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl Phys Lett 87, 034104. Google Scholar
Varela, M., Findlay, S.D., Lupini, A.R., Christen, H.M., Borisevich, A.Y., Dellby, N., Krivanek, O.L., Nellist, P.D., Oxley, M.P., Allen, L.J. & Pennycook, S.J. (2004). Spectroscopic imaging of single atoms within a bulk solid. Phys Rev Lett 92, 095502. Google Scholar
Varela, M., Gazquez, J., Pennycook, T.J., Magen, C., Oxley, M.P. & Pennycook, S.J. (2011). Applications of aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy to complex oxide materials. In Scanning Transmission Electron Microscopy: Imaging and Analysis, Pennycook, S.J. & Nellist, P.D. (Eds.), pp. 429466. New York: Springer.Google Scholar
von Ardenne, M. (1939). Intensitätsfragen und Auflösungsvermögen des Elektronenmikroskops. Z Phys 112, 744752.Google Scholar
Wall, J., Langmore, J., Isaacson, M. & Crewe, A.V. (1974). Scanning-transmission electron-microscopy at high-resolution. Proc Natl Acad Sci USA 71, 15.CrossRefGoogle ScholarPubMed
Wang, S., Borisevich, A.Y., Rashkeev, S.N., Glazoff, M.V., Sohlberg, K., Pennycook, S.J. & Pantelides, S.T. (2004). Dopants adsorbed as single atoms prevent degradation of catalysts. Nat Mater 3, 143146.Google Scholar
Watanabe, M. (2011). X-ray energy-dispersive spectrometry in scanning tranmission electron microscopes. In Scanning Transmission Electron Microscopy: Imaging and Analysis, Pennycook, S.J. & Nellist, P.D. (Eds.), pp. 291351. New York: Springer.Google Scholar
Zhou, W., Lee, J., Nanda, J., Pantelides, S.T., Pennycook, S.J. & Idrobo, J.C. (2012a). Atomically localized plasmon enhancement in monolayer graphene. Nat Nanotechnol 7, 161165.Google Scholar
Zhou, W., Pennycook, S.J. & Idrobo, J.C. (2012b). Localization of inelastic electron scattering in the low-loss energy regime. Ultramicroscopy 119, 5156.Google Scholar
Zhou, W., Ross-Medgaarden, E.I., Knowles, W.V., Wong, M.S., Wachs, I.E. & Kiely, C.J. (2009). Identification of active Zr-WOx clusters on ZrO2 support for solid acid catalysts. Nat Chem 1, 722728.CrossRefGoogle ScholarPubMed