Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T14:32:13.276Z Has data issue: false hasContentIssue false

Signaling by Calcium and the RHOA GTPASE: Relating Structure to Function

Published online by Cambridge University Press:  02 July 2020

A.P. Somlyo
Affiliation:
Dept. of Molecular Physiology and Biological Physics, Univ. of Virginia, Charlottesville, VA22908
A.V. Somlyo
Affiliation:
Dept. of Molecular Physiology and Biological Physics, Univ. of Virginia, Charlottesville, VA22908
Get access

Extract

We will review the results of structural approaches used in our laboratory for evaluating the roles of calcium (Ca2+) and the small GTPase, RhoA, in normal and pathological cell signaling.

An early method, using strontium (Sr) as an electron opaque marker of mitochondrial Ca, was first used to localize this “Ca2+ surrogate” in the sarcoplasmic reticulum (SR) of smooth muscle. Subsequent development of electron probe X-ray microanalysis (EPMA) and electron energy-loss spectroscopy (EELS) allowed the direct and quantitative detection of intracellular Ca in smooth, skeletal and cardiac muscles. The major conclusion of these studies was that, in all muscles, the SR is the major intracellular sink/source of activator Ca2+. The high ratio of total/free cytoplasmic Ca2+ indicated the presence of significant cytoplasmic Ca buffers not only in striated, but also in smooth muscles, and EPMA of frog skeletal muscle showed that the time course of changes in cytoplasmic Ca during relaxation was consistent with the off-rate of Ca2+ from the Ca2+-buffer, parvalbumin.

Type
Philadelphia—The Other Motor City: Muscle and Non-Muscle Motility. A Dedication to Dr. Lee Peachey
Copyright
Copyright © Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Peachey, L.D.. J. Cell Biol. 20(1964)95.CrossRefGoogle Scholar
2.Somlyo, A.V. and A.P. Somlyo, . Science 174(1971)955.CrossRefGoogle Scholar
3.Hall, T.A., in Oster, G., Ed., Physical Techniques in Biological Research, IA, 2nd ed., Academic Press (1971).Google Scholar
4.Shumanetal, H.. Ultramicroscopy 1(1976)317.CrossRefGoogle Scholar
5.LeFurgey, A.. Ultramicroscopy 24(1988)185.CrossRefGoogle Scholar
6.Shuman, H. and Somlyo, A.P.Ultramicroscopy 21(1987)23.CrossRefGoogle Scholar
7.Somlyo, A.P. et al. J. Cell Biol. 81(1979)316.CrossRefGoogle Scholar
8.Bond, M. et al. J. Physiol. (London) 355(1984a)677.CrossRefGoogle Scholar
9.Bond, M. et al. J. Physiol. (London) 357(1984b)185.CrossRefGoogle Scholar
10.Somlyo, A.V. et al. Nature 268(1977)556.CrossRefGoogle Scholar
11.Somlyo, A.V. et al. J. Cell Biol. 90(1981)577.CrossRefGoogle Scholar
12.Jorgensen, A.O. et al. Circ. Res. 63(1988)1060.CrossRefGoogle Scholar
13.Somlyo, A.V. et al. J. Biol. Chem. 260(1985)6801.Google Scholar
14.Somlyo, A.P. et al., in Eatonn, D.C. and Mandel, L.J., Eds., in Cell Calcium and the Control of Membrane Transport, Rockefeller University Press (1987)77.Google Scholar
15.Horikawa, Y. et al. Biophys. J. 74(1998)1579.CrossRefGoogle Scholar
16.Somlyo, A.P. and Walz., B.J. Physiol. 358(1985)183.CrossRefGoogle Scholar
17.Lew, V.L. et al. Nature 315(1985)586.CrossRefGoogle Scholar
18.Isaacson, M. and Johnson, D.. Ultramicroscopy 1(1975)33.CrossRefGoogle Scholar
19.Zhao, L. et al. Ultramicroscopy 48(1993)290.CrossRefGoogle Scholar
20.Tang, Z. et al. J. Microsc. 175(1994) 100.CrossRefGoogle Scholar
21.Ho, R. et al. Microsc. Microanal. 5(1999) 17.CrossRefGoogle Scholar
22.Ho, R. et al. J. Microsc. 197(2000)46.CrossRefGoogle Scholar
23.Feng, J.L. et al. Ultramicroscopy 76(1999) 221.CrossRefGoogle Scholar
24.Somlyo, A.V. and Somlyo, A.P.. J. Pharmacol. Exp. Therap. 159(1968)129.Google Scholar
25.Somlyo, A.P. et al. Adv. Prot. Phosphatases 5(1989)181.Google Scholar
26.Kitazawa, T. et al. Proc. Natl. Acad. Sci. USA 88(1991)9307.CrossRefGoogle Scholar
27.Kimura, K. et al. Science 273(1996)245.CrossRefGoogle Scholar
28.Hartshorne, D.J. et al. J. Mus. Res. Cell Motil. 19(1998)325.CrossRefGoogle Scholar
29.Somlyo, A.P. and Somlyo, A.V.. J. Physiol. 522(2000) 177.CrossRefGoogle Scholar
30.Somlyo, A.P. et al. Rev. Physiol. Biochem. Pharmacol. 134(1999)203.Google Scholar
31.Wei, Y. et al. Nature Struct. Biol. 4(1997)699.CrossRefGoogle Scholar
32.Longenecker, K. et al. Acta Cryst. D55(1999)1503.Google Scholar
33.Read, P. W. et al. Protein Science 9(2000) 1.Google Scholar
34.Uehata, M. et al. Nature 389(1997)990.CrossRefGoogle Scholar
35.Fu, X. et al. FEBS Lett. 440(1998)183.CrossRefGoogle Scholar
36.Jensen, P.E. et al. Biochemical J. 318(1996)469.CrossRefGoogle Scholar
37.Yoshioka, T. and Somlyo, A.P.. (1984) J. Cell Biol. 99:558568.CrossRefGoogle Scholar
38.Somlyo, A.V. et al. Biochem. Biophys. Res. Commun. (in press).Google Scholar
39. Supported by NIH HL48807, NIH HL 19242 and the Yoshitomi Company.Google Scholar