Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T10:46:24.845Z Has data issue: false hasContentIssue false

A Route to Integrating Dynamic 4D X-ray Computed Tomography and Machine Learning to Model Material Performance

Published online by Cambridge University Press:  04 August 2017

Nikolaus L. Cordes
Affiliation:
Engineered Materials, Materials Science & Technology Division, Los Alamos National Laboratory, Los Alamos, NM, USA
Kevin Henderson
Affiliation:
Engineered Materials, Materials Science & Technology Division, Los Alamos National Laboratory, Los Alamos, NM, USA
Brian M. Patterson
Affiliation:
Engineered Materials, Materials Science & Technology Division, Los Alamos National Laboratory, Los Alamos, NM, USA

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstract
Copyright
© Microscopy Society of America 2017 

References

[1] Mueller, T., Kusne, A. G. & Ramprasad, R. in Reviews in Computational Chemistry Vol. 29, ed A. L. Parrill & K. B. LipkowitzWiley. p. 480.Google Scholar
[2] Patterson, , et al, Journal of Materials Science 51(1 2016). p. 171.CrossRefGoogle Scholar