Published online by Cambridge University Press: 04 April 2013
During mitosis nucleation-promoting factors (NPFs) bind to the Arp2/3 complex and activate actin assembly. JMY and WAVE2 are two critical members of the NPFs. Previous studies have demonstrated that NPFs promote multiple processes such as cell migration and cytokinesis. However, the role of NPFs in development of mammalian embryos is still unknown. Results of the present study show that the NPFs JMY and WAVE2 are critical for cytokinesis during development of mouse embryos. Both JMY and WAVE2 are expressed in mouse embryos. After injection of JMY or WAVE2 siRNA, all embryos failed to develop to the morula or blastocyst stages. Moreover, using fluorescence intensity analysis, we found that the expression of actin decreased, and multiple nuclei were observed within a single cell indicating that NPFs-induced actin reduction caused the failure of cell division. In addition, injection of JMY and WAVE2 siRNA also caused ARP2 degradation, indicating that involvement of NPFs in development of mouse embryos is mainly through regulation of ARP2/3-induced actin assembly. Taken together, these data suggested that WAVE2 and JMY are involved in development of mouse embryos, and their regulation may be through a NPFs-Arp2/3-actin pathway.