Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T19:35:33.476Z Has data issue: false hasContentIssue false

Revisiting Temporal Evolution of Cu-Rich Precipitates in Fe–Cu Alloy: Correlative Small Angle Neutron Scattering and Atom-Probe Tomography Studies

Published online by Cambridge University Press:  03 May 2019

Sarita Ahlawat*
Affiliation:
Glass & Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai-400085, Maharashtra, India Homi Bhabha National Institute, Mumbai-400094, Maharashtra, India
Sudip Kumar Sarkar
Affiliation:
Glass & Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai-400085, Maharashtra, India Homi Bhabha National Institute, Mumbai-400094, Maharashtra, India
Debasis Sen
Affiliation:
Homi Bhabha National Institute, Mumbai-400094, Maharashtra, India Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai-400085, Maharashtra, India
Aniruddha Biswas
Affiliation:
Glass & Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai-400085, Maharashtra, India Homi Bhabha National Institute, Mumbai-400094, Maharashtra, India
*
*Author for correspondence: Sarita Ahlawat, E-mail: [email protected]
Get access

Abstract

Binary Fe–Cu alloys are effective prototypes for investigating radiation-induced formation and growth of nanometric Cu-rich precipitates (CRPs) in nuclear reactor pressure vessels. In this report, the temporal evolution of CRPs during thermal aging of Fe–Cu binary alloys has been investigated by using complementary techniques such as atom probe tomography (APT) and small-angle neutron scattering (SANS). We report a detailed quantitative evolution of a rarely observed morphological transformation of Cu precipitates from spherical to ellipsoid with a significant change (approximately two times) in aspect ratio, an effect known to be associated with the 9R-3R structural transition of the precipitates. It is demonstrated through APT that the precipitates remain spherical up to 8 h, however, they subsequently convert to oblate ellipsoid upon further aging. SANS analysis also detected signs of this morphological transition in reciprocal space. Furthermore, SANS quantifies evolution of the precipitates and corroborates well with the APT results. Interestingly, the power-law exponent of the temporal evolution for mean size and number density agree reasonably well with the Lifshitz–Slyozov–Wagner model, in spite of the complex morphological evolution of the precipitates.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitchison, J (1957). The Lognormal Distribution. Cambridge, UK: Cambridge University Press.Google Scholar
Auger, P, Pareige, P, Akamatsu, M & Blavette, D (1995) APFIM investigation of clustering in neutron-irradiated FeCu alloys and pressure vessel steels. J Nucl Mater 225, 225230.Google Scholar
Biswas, A, Sen, D, Sarkar, SK, Sarita, A, Mazumder, S & Seidman, DN (2016). Temporal evolution of coherent precipitates in an aluminum alloy W319: A correlative anisotropic small angle X-ray scattering, transmission electron microscopy and atom-probe tomography study. Acta Mater 116, 219230.10.1016/j.actamat.2016.06.043Google Scholar
Cao, L, Wu, S & Liu, B (2013). On the Cu precipitation behavior in thermo-mechanically embrittlement processed low copper reactor pressure vessel model steel. Mater Des 47, 551556.10.1016/j.matdes.2012.12.055Google Scholar
Charleux, M, Livet, F, Bley, F, Louchet, F & Bréchet, Y (1996). Thermal ageing of an Fe–Cu alloy: Microstructural evolution and precipitation hardening. Philos Mag A 73(4), 883897.10.1080/01418619608243694Google Scholar
Chen, BL, Wang, W, Xie, H, Ge, RR, Zhang, ZY, Li, ZW, Zhou, XY & Zhou, BX (2016). Phase transformation of Cu-rich precipitates from 9R to 3R variant via ledges mechanism in ferritic steel containing copper. J Microsc 262(1), 123127.10.1111/jmi.12352Google Scholar
De Geuser, F & Deschamps, A (2012). Precipitate characterisation in metallic systems by small-angle X-ray or neutron scattering. C R Phys 13(3), 246256.10.1016/j.crhy.2011.12.008Google Scholar
Debarberis, L, Acosta, B, Zeman, A, Sevini, F, Ballesteros, A, Kryukov, A, Gillemot, F & Brumovsky, M (2005). Effect of irradiation temperature in PWR RPV materials and its inclusion in semi-mechanistic model. Scr Mater 53(6), 769773.10.1016/j.scriptamat.2005.05.026Google Scholar
Deschamps, A, Militzer, M & Poole, WJ (2001). Precipitation kinetics and strengthening of a Fe–0.8wt% Cu alloy. ISIJ Int 41(2), 196205.10.2355/isijinternational.41.196Google Scholar
Fisher, SB, Harbottle, JE & Aldridge, N (1985). Radiation hardening in magnox pressure-vessel steels. Philosophical transactions of the Royal Society of London. Math Phys Sci: Ser A 315(1532), 301.Google Scholar
Goodman, SR, Brenner, SS & Low, JR (1973 a). An FIM-atom probe study of the precipitation of copper from iron-1.4 at. pct copper. Part I: Field-ion microscopy. Metallogr Trans 4(10), 23632369.10.1007/BF02669376Google Scholar
Goodman, SR, Brenner, SS & Low, JR (1973 b). An FIM-atom probe study of the precipitation of copper from iron-1.4 at. pct copper. Part II: Atom probe analyses. Metallogr Trans 4(10), 23712378.10.1007/BF02669377Google Scholar
Guinier, GFA, Walker, BC & Yudowith, LK (1955). Small Angle Scattering of X-Rays. New York: Wiley.Google Scholar
Hauser, H, Grössinger, R, Keplinger, F & Schönhart, M (2008). Effect of structural changes on hysteresis properties of steel. J Magn Magn Mater 320(20), e983e987.10.1016/j.jmmm.2008.04.101Google Scholar
He, SM, van Dijk, NH, Paladugu, M, Schut, H, Kohlbrecher, J, Tichelaar, FD & van der Zwaag, S (2010). In situ determination of aging precipitation in deformed Fe–Cu and Fe–Cu–B–N alloys by time-resolved small-angle neutron scattering. Phys Rev B 82(17), 174111.10.1103/PhysRevB.82.174111Google Scholar
Hornbogen, E (1962). The role of strain energy during precipitation of copper and gold from alpha iron. Acta Metall 10(5), 525533.10.1016/0001-6160(62)90197-9Google Scholar
Hu, SY, Li, YL & Watanabe, K (1999). Calculation of internal stresses around Cu precipitates in the bcc Fe matrix by atomic simulation. Modell Simul Mater Sci Eng 7(4), 641.Google Scholar
Isheim, D, Gagliano, MS, Fine, ME & Seidman, DN (2006). Interfacial segregation at Cu-rich precipitates in a high-strength low-carbon steel studied on a sub-nanometer scale. Acta Mater 54(3), 841849.10.1016/j.actamat.2005.10.023Google Scholar
Kiener, D, Hosemann, P, Maloy, SA & Minor, AM (2011). In situ nanocompression testing of irradiated copper. Nat Mater 10(8), 608613.10.1038/nmat3055Google Scholar
Kikuchi, H, Onuki, T, Kamada, Y, Ara, K, Kobayashi, S & Takahashi, S (2007). Initial permeability and Vickers hardness of thermally aged FeCu alloy. J Magn Magn Mater 310(2, Part 3), 28862888.10.1016/j.jmmm.2006.11.085Google Scholar
Kolli, RP & Seidman, DN (2008). The temporal evolution of the decomposition of a concentrated multicomponent Fe–Cu-based steel. Acta Mater 56(9), 20732088.10.1016/j.actamat.2007.12.044Google Scholar
Kolli, RP & Seidman, DN (2014). Co-Precipitated and collocated carbides and Cu-rich precipitates in a Fe–Cu steel characterized by atom-probe tomography. Microsc Microanal 20(6), 17271739.10.1017/S1431927614013221Google Scholar
Kronmuller, FM (2003). Micromagnetism and the Microstructure of Ferromagnetic Solids. Cambridge: Cambridge University Press.Google Scholar
Larson, DJ, Gault, B, Geiser, BP, De Geuser, F & Vurpillot, F (2013). Atom probe tomography spatial reconstruction: Status and directions. Curr Opin Solid State Mater Sci 17(5), 236247.10.1016/j.cossms.2013.09.002Google Scholar
Le Bouar, Y (2001). Atomistic study of the coherency loss during the B.C.C.-9R transformation of small copper precipitates in ferritic steels. Acta Mater 49(14), 26612669.10.1016/S1359-6454(01)00178-1Google Scholar
Li, DY & Chen, LQ (1997). Shape of a rhombohedral coherent Ti11Ni14 precipitate in a cubic matrix and its growth and dissolution during constrained aging. Acta Mater 45(6), 24352442.10.1016/S1359-6454(96)00363-1Google Scholar
Lifshitz, IM & Slyozov, VV (1961). The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19(1), 3550.10.1016/0022-3697(61)90054-3Google Scholar
Maury, F, Lorenzelli, N, Mathon, MH, Novion, CHd & Lagarde, P (1994). Copper precipitation in FeCu, FeCuMn, and FeCuNi dilute alloys followed by X-ray absorption spectroscopy. J Phys: Condens Matter 6(2), 569.Google Scholar
Miller, MK, Pareige, P & Burke, MG (2000). Understanding pressure vessel steels: an atom probe perspective. Mater Charact 44(1), 235254.10.1016/S1044-5803(99)00056-XGoogle Scholar
Miller, MK, Russell, KF, Pareige, P, Starink, MJ & Thomson, RC (1998). Low temperature copper solubilities in Fe–Cu–Ni. Mater Sci Eng: A 250(1), 4954.10.1016/S0921-5093(98)00535-8Google Scholar
Miller, MK, Wirth, BD & Odette, GR (2003). Precipitation in neutron-irradiated Fe–Cu and Fe–Cu–Mn model alloys: A comparison of APT and SANS data. Mater Sci Eng: A 353(1), 133139.10.1016/S0921-5093(02)00679-2Google Scholar
Monzen, R, Iguchi, M & Jenkins, ML (2000). Structural changes of 9R copper precipitates in an aged Fe–Cu alloy. Philos Mag Lett 80(3), 137148.10.1080/095008300176263Google Scholar
Monzen, R, Takada, K & Watanabe, C (2004). Coarsening of spherical Cu particles in an α-Fe matrix. ISIJ Int 44(2), 442444.10.2355/isijinternational.44.442Google Scholar
Nagai, Y, Tang, Z, Hassegawa, M, Kanai, T & Saneyasu, M (2001). Irradiation-induced Cu aggregations in Fe: An origin of embrittlement of reactor pressure vessel steels. Phys Rev B 63(13), 134110.10.1103/PhysRevB.63.134110Google Scholar
Onitsuka, T, Takenaka, M, Kuramoto, E, Nagai, Y & Hasegawa, M (2001). Deformation-enhanced Cu precipitation in Fe–Cu alloy studied by positron annihilation spectroscopy. Phys Rev B 65(1), 012204.Google Scholar
Osamura, K, Okuda, H, Asano, K, Furusaka, M, Kishida, K, Kurosawa, F & Uemori, R (1994 a). SANS study of phase decomposition in Fe–Cu alloy with Ni and Mn addition. ISIJ Int 34(4), 346354.Google Scholar
Osamura, K, Okuda, H, Ochiai, S, Takashima, M, Asano, K, Furusaka, M, Kishida, K & Kurosawa, F (1994 b). Precipitation hardening in Fe–Cu binary and quaternary alloys. ISIJ Int 34(4), 359365.Google Scholar
Othen, PJ, Jenkins, ML & Smith, GDW (1994). High-resolution electron microscopy studies of the structure of Cu precipitates in α-Fe. Philos Mag A 70(1), 124.10.1080/01418619408242533Google Scholar
Othen, PJ, Jenkins, ML, Smith, GDW & Phythian, WJ (1991). Transmission electron microscope investigations of the structure of copper precipitates in thermally-aged Fe–Cu and Fe–Cu–Ni. Philos Mag Lett 64(6), 383391.10.1080/09500839108215121Google Scholar
Pareige, P & Miller, MK (1996). Characterization of neutron-induced copper-enriched clusters in pressure vessel steel weld: An APFIM study. Appl Surf Sci 94(Suppl C), 370377.10.1016/0169-4332(95)00399-1Google Scholar
Pareige, P, Van Duysen, JC & Auger, P (1993). An APFIM study of the microstructure of a ferrite alloy after high fluence neutron irradiation. Appl Surf Sci 67(1), 342347.Google Scholar
Pareige, PJ, Russell, KF & Miller, MK (1996). APFIM studies of the phase transformations in thermally aged ferritic FeCuNi alloys: Comparison with aging under neutron irradiation. Appl Surf Sci 94(Suppl C), 362369.10.1016/0169-4332(95)00398-3Google Scholar
Park, DG, Ryu, KS, Kobayashi, S, Takahashi, S & Cheong, YM (2010). Change in magnetic properties of a cold rolled and thermally aged Fe–Cu alloy. J Appl Phys 107(9), 09A330.Google Scholar
Pedersen, J (1994). Determination of size distribution from small-angle scattering data for systems with effective hard-sphere interactions. J Appl Crystallogr 27(4), 595608.Google Scholar
Perez, M, Perrard, F, Massardier, V, Kleber, X, Deschamps, A, de Monestrol, H, Pareige, P & Covarel, G (2005). Low-temperature solubility of copper in iron: Experimental study using thermoelectric power, small angle X-ray scattering and tomographic atom probe. Philos Mag 85(20), 21972210.10.1080/14786430500079645Google Scholar
Phythian, WJ & English, CA (1993). Microstructural evolution in reactor pressure vessel steels. J Nucl Mater 205, 162177.Google Scholar
Salje, G & Feller-Kniepmeier, M (1977). The diffusion and solubility of copper in iron. J Appl Phys 48(5), 18331839.Google Scholar
Schober, M, Eidenberger, E, Staron, P & Leitner, H (2011). Critical consideration of precipitate analysis of Fe–1 at.% Cu using atom probe and small-angle neutron scattering. Microsc Microanal 17(1), 2633.Google Scholar
Sen, D, Spalla, O, Belloni, L, Charpentier, T & Thill, A (2006). Temperature effects on the composition and microstructure of spray-dried nanocomposite powders. Langmuir 22(8), 37983806.10.1021/la052775xGoogle Scholar
Shim, JH, Cho, YW, Kwon, SC, Kim, WW & Wirth, BD (2007). Screw dislocation assisted martensitic transformation of a bcc Cu precipitate in bcc Fe. Appl Phys Lett 90(2), 021906.10.1063/1.2429902Google Scholar
Shu, S, Almirall, N, Wells, PB, Yamamoto, T, Odette, GR & Morgan, DD (2018 a). Precipitation in Fe–Cu and Fe–Cu–Mn model alloys under irradiation: Dose rate effects. Acta Mater 157, 7282.Google Scholar
Shu, S, Wirth, BD, Wells, PB, Morgan, DD & Odette, GR (2018 b). Multi-technique characterization of the precipitates in thermally aged and neutron irradiated Fe–Cu and Fe–Cu–Mn model alloys: Atom probe tomography reconstruction implications. Acta Mater 146, 237252.Google Scholar
Styman, PD, Hyde, JM, Morley, A, Wilford, K, Riddle, N & Smith, GDW (2018). The effect of Ni on the microstructural evolution of high Cu reactor pressure vessel steel welds after thermal ageing for up to 100,000 h. Mater Sci Eng: A 736, 111119.Google Scholar
Umantsev, A & Olson, GB (1993). Ostwald ripening in multicomponent alloys. Scr Metall Mater 29(8), 11351140.10.1016/0956-716X(93)90191-TGoogle Scholar
Vandenbossche, LP, Konstantinović, MJ, Almazouzi, A & Dupré, LR (2007). Magnetic evaluation of the hardening and softening of thermally aged iron–copper alloys. J Phys D: Appl Phys 40(14), 4114.10.1088/0022-3727/40/14/003Google Scholar
Wagner, R & Voorhees, PW (2001). Homogeneous second-phase precipitation. In Phase Transformations in Materials. Kosortz, G (Ed.), p. 309 Weinheim: Wiley-VCH.Google Scholar
Zinkle, SJ & Busby, JT (2009). Structural materials for fission & fusion energy. Mater Today 12(11), 1219.10.1016/S1369-7021(09)70294-9Google Scholar