Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-02T21:28:52.040Z Has data issue: false hasContentIssue false

Resistance to Degradation of Resin-Dentin Bonds Produced by One-Step Self-Etch Adhesives

Published online by Cambridge University Press:  06 December 2012

Manuel Toledano*
Affiliation:
University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071, Granada, Spain
Inmaculada Cabello
Affiliation:
University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071, Granada, Spain
Monica Yamauti
Affiliation:
University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071, Granada, Spain
Marcelo Giannini
Affiliation:
Piracicaba School of Dentistry, State University of Campinas, Piracicaba, Sao Paulo, Brazil
Fátima S. Aguilera
Affiliation:
University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071, Granada, Spain
Estrella Osorio
Affiliation:
University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071, Granada, Spain
Raquel Osorio
Affiliation:
University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071, Granada, Spain
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

The objective of this article is to evaluate the resistance to degradation of resin-dentin bonds formed with three one-step adhesives. Flat, mid-coronal dentin surfaces were bonded with the self-etching adhesives [Tokuyama Bond Force (TBF), One Up Bond F Plus (OUB), and G-Bond (GB)]. The bonded teeth were subjected to fatigue loading, chemical degradation, and stored in distilled water for four time periods (up to 12 months). Specimens were tested for microtensile bond strength and microleakage. Fractographic analysis was performed by scanning electron microscopy. Bonded interfaces were examined by light microscopy using Masson's trichrome staining. An atomic force microscope was employed to analyze phase separation and surface nanoroughness (Ra) at the polymers. Vickers microhardness and the degree of the conversion (DC) were also determined. ANOVA and multiple comparisons tests were performed. Bond strength significantly decreased after the chemical challenge, but not after load cycling. Aging decreased bond strength after 6 months in TBF and GB, in OUB after 12 months. An increase of the nonresin protected collagen zone occurred in all groups, after storing. TBF showed the highest roughness, microhardness, and DC values, and GB showed the lowest. Mild self-etch one-step adhesives (TBF/OUB) showed a higher degree of cure, lower hydrophilicity, and major resistance to degradation of resin-dentin bonds when compared to highly acidic self-etching adhesive (GB).

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carvalho, R.M., Chersoni, S., Frankenberger, R., Pashley, D.H., Prati, C. & Tay, F.R. (2005). A challenge to the conventional wisdom that simultaneous etching and resin infiltration always occurs in self-etch adhesives. Biomaterials 26, 10351042.CrossRefGoogle Scholar
De Munck, J., Van Meerbeek, B., Satoshi, I., Vargas, M., Yoshida, Y., Armstrong, S., Lambrechts, P. & Vanherle, G. (2003). Microtensile bond strengths of one- and two-step self-etch adhesives to bur cut enamel and dentin. Am J Dent 16, 414420.Google Scholar
Eddleston, C.L., Hindle, A.R., Agee, K.A., Carvalho, R.M., Tay, F.R., Rueggeberg, F.A. & Pashley, D.H. (2003). Dimensional changes in acid-demineralized dentin matrices following the use of HEMA-water versus HEMA-alcohol primers. J Biomed Mater Res A 67, 900907.Google Scholar
El Zohairy, A.A., Saber, M.H., Abdalla, A.I. & Feilzer, A.J. (2010). Efficacy of microtensile versus microshear bond testing for evaluation of bond strength of dental adhesive systems to enamel. Dent Mater 26, 848854.CrossRefGoogle ScholarPubMed
Erdilek, D., Dörter, C., Koray, F., Kunzelmann, K.H., Efes, B.G. & Gomec, Y. (2009). Effect of thermo-mechanical load cycling on microleakage in class II ormocer restorations. Eur J Dent 3, 200205.Google Scholar
Ferracane, J.L. & Greener, E.H. (1984). Fourier transform infrared analysis of degree of polymerization in unfilled resins—Methods comparison. J Dent Res 63, 10931095.Google Scholar
Glavchev, I., Nikolov, R.N. & Valchev, P. (2003). Determination of evaporation rates of mixed solvents with the formation of thin films for membranes. Polym Test 22, 529532.CrossRefGoogle Scholar
Gordan, V.V., Vargas, M.A., Cobb, D.S. & Denehy, G.E. (1997). Evaluation of adhesive systems using acidic primers. Am J Dent 10, 219223.Google Scholar
Hashimoto, M., Ohno, H., Kaga, M., Endo, K., Sano, H. & Oguchi, H. (2000). In vivo degradation of resin-dentin bonds in humans over 1 to 3 years. J Dent Res 79, 13851391.Google Scholar
Hashimoto, M., Ohno, H., Kaga, M., Sano, H., Endo, K. & Oguchi, H. (2002). The extent to which resin can infiltrate dentin by acetone-based adhesives. J Dent Res 81, 7478.Google Scholar
Hass, V., Folkuenig, M.S., Reis, A. & Loguercio, A.D. (2011). Influence of adhesive properties on resin-dentin bond strength of one-step self-etching adhesives. J Adhes Dent 13, 417424.Google Scholar
Hiraishi, N., Breschi, L., Prati, C., Ferrari, M., Tagami, J. & King, N.M. (2007). Technique sensitivity associated with air-drying of HEMA-free, single-bottle, one-step self-etch adhesives. Dent Mater 23, 498505.CrossRefGoogle ScholarPubMed
Hosaka, K., Nakajima, M., Takahashi, M., Itoh, S., Ikeda, M., Tagami, J. & Pashley, D.H. (2010). Relationship between mechanical properties of one-step self-etch adhesives and water sorption. Dent Mater 26, 360367.Google Scholar
Hosoya, Y. (2006). Hardness and elasticity of bonded carious and sound primary tooth dentin. J Dent 34, 164171.Google Scholar
Ito, S., Hashimoto, M., Wadgaonkar, B., Svizero, N., Carvalho, R.M., Yiu, C., Rueggeberg, F.A., Foulger, S., Saito, T., Nishitani, Y., Yoshiyama, M., Tay, F.R. & Pashley, D.H. (2005). Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity. Biomaterials 26, 64496459.Google Scholar
Jacobsen, T. & Söderholm, K.J. (1995). Some effects of water on dentin bonding. Dent Mater 11, 132136.Google Scholar
Li, H., Burrow, M.F. & Tyas, M.J. (2002). The effect of load cycling on the nanoleakage of dentin bonding systems. Dent Mater 18, 111119.CrossRefGoogle ScholarPubMed
Margvelashvili, M., Goracci, C., Beloica, M., Papacchini, F. & Ferrari, M. (2010). In vitro evaluation of bonding effectiveness to dentin of all-in-one adhesives. J Dent 38, 106112.Google Scholar
Miyazaki, M., Tsubota, K., Onose, H. & Hinoura, K. (2002). Influence of adhesive application duration on dentin bond strength of single-application bonding systems. Oper Dent 27, 278283.Google ScholarPubMed
Monticelli, F., Osorio, R., Pisani-Proença, J. & Toledano, M. (2007). Resistance to degradation of resin-dentin bonds using a one-step HEMA-free adhesive. J Dent 35, 181186.Google Scholar
Moszner, N., Salz, U. & Zimmermann, J. (2005). Chemical aspects of self-etching enamel-dentin adhesives: A systematic review. Dent Mater 21, 895910.Google Scholar
Nunes, T.G., Ceballos, L., Osorio, R. & Toledano, M. (2005). Spatially resolved photopolymerization kinetics and oxygen inhibition in dental adhesives. Biomaterials 26, 18091817.CrossRefGoogle ScholarPubMed
Osorio, E., Toledano, M., Yamauti, M. & Osorio, R. (2012). Differential nanofiller cluster formations in dental adhesive systems. Microsc Res Tech 75, 749757.CrossRefGoogle ScholarPubMed
Osorio, R., Toledano, M., Osorio, E., Aguilera, F.S. & Tay, F.R. (2005). Effect of load cycling and in vitro degradation on resin-dentin bonds using a self-etching primer. J Biomed Mater Res A 72, 399408.Google Scholar
Pashley, D.H., Carvalho, R.M., Sano, H., Nakajima, M., Yoshiyama, M., Shono, Y., Fernandes, C.A. & Tay, F. (1999). The microtensile bond test: A review. J Adhes Dent 1, 299309.Google ScholarPubMed
Pashley, D.H., Carvalho, R.M., Tay, F.R., Agee, K.A. & Lee, K.W. (2002). Solvation of dried dentin matrix by water and other polar solvents. Am J Dent 15, 97102.Google Scholar
Sano, H., Yoshikawa, T., Pereira, P.N., Kanemura, N., Morigami, M., Tagami, J. & Pashley, D.H. (1999). Long-term durability of dentin bonds made with a self-etching primer, in vivo. J Dent Res 78, 906911.CrossRefGoogle ScholarPubMed
Santos, P., Júlio, E. & Silva, V. (2007). Correlation between concrete-to-concrete bond strength and the roughness of the substrate surface. Constr Build Mater 21, 16881695.Google Scholar
Sauro, S., Toledano, M., Aguilera, F.S., Mannocci, F., Pashley, D.H., Tay, F.R., Watson, T.F. & Osorio, R. (2011). Resin-dentin bonds to EDTA-treated vs. acid-etched dentin using ethanol wet-bonding. Part II: Effects of mechanical cycling load on microtensile bond strengths. Dent Mater 27, 563572.Google Scholar
Schulze, K.A., Oliveira, S.A., Wilson, R.S., Gansky, S.A., Marshall, G.W. & Marshall, S.J. (2005). Effect of hydration variability on hybrid layer properties of a self-etching versus an acid-etching system. Biomaterials 26, 10111018.Google Scholar
Takahashi, A., Sato, Y., Uno, S., Pereira, P.N. & Sano, H. (2002). Effects of mechanical properties of adhesive resins on bond strength to dentin. Dent Mater 18, 263268.Google Scholar
Takahashi, R., Nikaido, T., Ariyoshi, M., Foxton, R.M. & Tagami, J. (2010). Microtensile bond strengths of a dual-cure resin cement to dentin resin-coated with an all-in-one adhesive system using two curing modes. Dent Mater 29, 268277.Google Scholar
Tay, F.R., Gwinnett, J.A. & Wei, S.H. (1996). Micromorphological spectrum from overdrying to overwetting acid-conditioned dentin in water-free acetone-based, single-bottle primer/adhesives. Dent Mater 12, 236244.Google Scholar
Tay, F.R. & Pashley, D.H. (2001). Aggressiveness of contemporary self-etching systems. I: Depth of penetration beyond dentin smear layers. Dent Mater 17, 296308.Google Scholar
Tay, F.R. & Pashley, D.H. (2003). Have dentin adhesives become too hydrophilic? J Can Dent Assoc 69, 726731.Google Scholar
Toledano, M., Cabello, I., Yamauti, M. & Osorio, R. (2012a). Differential resin-dentin bonds created after caries removal with polymer burs. Microsc Microanal 18, 112.Google Scholar
Toledano, M., Osorio, R., Albaladejo, A., Aguilera, F.S. & Osorio, E. (2006). Differential effect of in vitro degradation on resin-dentin bonds produced by self-etch versus total-etch adhesives. J Biomed Mater Res A 77, 128135.Google ScholarPubMed
Toledano, M., Osorio, R., Osorio, E., Aguilera, F.S., Yamauti, M., Pashley, D.H. & Tay, F. (2007). Durability of resin-dentin bonds: Effects of direct/indirect exposure and storage media. Dent Mater 23, 885892.Google ScholarPubMed
Toledano, M., Perdigão, J., Osorio, R. & Osorio, E. (2000). Effect of dentin deproteinization on microleakage of class V composite restorations. Oper Dent 25, 497504.Google Scholar
Toledano, M., Yamauti, M., Osorio, E., Monticelli, F. & Osorio, R. (2012b). Characterization of micro- and nanophase separation of dentin bonding agents by stereoscopy and atomic force microscopy. Microsc Microanal 3, 110.Google Scholar
Uehara, K. & Sakurai, M. (2002). Bonding strength of adhesives and surface roughness of joined parts. J Mater Process Technol 127, 178181.Google Scholar
Uekusa, S., Yamaguchi, K., Miyazaki, M., Tsubota, K., Kurokawa, H. & Hosoya, Y. (2006). Bonding efficacy of single-step self-etch systems to sound primary and permanent tooth dentin. Oper Dent 31, 569576.Google Scholar
Van Landuyt, K.L., De Munck, J., Snauwaert, J., Coutinho, E., Poitevin, A., Yoshida, Y., Inoue, S., Peumans, M., Suzuki, K., Lambrechts, P. & Van Meerbeek, B. (2005). Monomer-solvent phase separation in one-step self-etch adhesives. J Dent Res 84, 183188.Google Scholar
Van Landuyt, K.L., Snauwaert, J., De Munck, J., Peumans, M., Yoshida, Y., Poitevin, A., Coutinho, E., Suzuki, K., Lambrechts, P. & Van Meerbeek, B. (2007). Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 28, 37573785.Google Scholar
Van Meerbeek, B., De Munck, J., Yoshida, Y., Inoue, S., Vargas, M., Vijay, P., Van Landuyt, K., Lambrechts, P. & Vanherle, G. (2003). Buonocore memorial lecture. Adhesion to enamel and dentin: Current status and future challenges. Oper Dent 28, 215235.Google Scholar
Van Meerbeek, B., Van Landuyt, K., De Munck, J., Hashimoto, M., Peumans, M., Lambrechts, P., Yoshida, Y., Inoue, S. & Suzuki, K. (2005). Technique-sensitivity of contemporary adhesives. Dent Mater 24, 113.Google Scholar
Van Strijp, A.J., Jansen, D.C., DeGroot, J., ten Cate, J.M. & Everts, V. (2003). Host-derived proteinases and degradation of dentine collagen in situ . Caries Res 37, 5865.Google Scholar
Yamauti, M., Hashimoto, M., Sano, H., Ohno, H., Carvalho, R.M., Kaga, M., Tagami, J., Oguchi, H. & Kubota, M. (2003). Degradation of resin-dentin bonds using NaOCl storage. Dent Mater 19, 399405.Google Scholar
Yiu, C.K., Pashley, E.L., Hiraishi, N., King, N.M., Goracci, C., Ferrari, M., Carvalho, R.M., Pashley, D.H. & Tay, F.R. (2005). Solvent and water retention in dental adhesive blends after evaporation. Biomaterials 26, 68636872.Google Scholar
Yoshida, E., Hashimoto, M., Hori, M., Kaga, M., Sano, H. & Oguchi, H. (2004a). Deproteinizing effects on resin-tooth bond structures. J Biomed Mater Res B Appl Biomater 68, 2935.Google Scholar
Yoshida, Y., Nagakane, K., Fukuda, R., Nakayama, Y., Okazaki, M., Shintani, H., Inoue, S., Tagawa, Y., Suzuki, K., De Munck, J. & Van Meerbeek, B. (2004b). Comparative study on adhesive performance of functional monomers. J Dent Res 83, 454458.CrossRefGoogle ScholarPubMed
Zhou, X.D., Zhang, S.C., Huebner, W. & Ownby, P.D. (2001). Effect of the solvent on the particle morphology of spray PMMA. J Mater Sci 36, 37593768.CrossRefGoogle Scholar