Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-16T03:23:49.279Z Has data issue: false hasContentIssue false

Replica Extraction Method on Nanostructured Gold Coatings and Orientation Determination Combining SEM and TEM Techniques

Published online by Cambridge University Press:  14 October 2014

Christian Bocker*
Affiliation:
Otto-Schott-Institut, University Jena, Fraunhoferstr 6, 07743 Jena, Germany
Michael Kracker
Affiliation:
Otto-Schott-Institut, University Jena, Fraunhoferstr 6, 07743 Jena, Germany
Christian Rüssel
Affiliation:
Otto-Schott-Institut, University Jena, Fraunhoferstr 6, 07743 Jena, Germany
*
*Corresponding author.[email protected]
Get access

Abstract

In the field of electron microscopy the replica technique is known as an indirect method and also as an extraction method that is usually applied on metallurgical samples. This contribution describes a fast and simple transmission electron microscopic (TEM) sample preparation by complete removal of nanoparticles from a substrate surface that allows the study of growth mechanisms of nanostructured coatings. The comparison and combination of advanced diffraction techniques in the TEM and scanning electron microscopy (SEM) provide possibilities for operators with access to both facilities. The analysis of TEM-derived diffraction patterns (convergent beam electron diffraction) in the SEM/electron backscatter diffraction software simplifies the application, especially when the patterns are not aligned along a distinct zone axis. The study of the TEM sample directly by SEM and transmission Kikuchi diffraction allows cross-correlation with the TEM results.

Type
Technology and Software Development
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bechelany, M., Maeder, X., Riesterer, J., Hankache, J., Lerose, D., Christiansen, S., Michler, J. & Philippe, L. (2010). Synthesis mechanisms of organized gold nanoparticles: Influence of annealing temperature and atmosphere. Cryst Growth Des 10(2), 587596.CrossRefGoogle Scholar
Bhattacharyya, S., Höche, T., Hahn, K. & van Aken, P.A. (2009). Various transmission electron microscopic techniques to characterize phase separation—illustrated using a LaF3 containing aluminosilicate glass. J Non-Cryst Solids 355(6), 393396.Google Scholar
Bohren, C.F. & Huffman, D.R. (1983). Absorption and Scattering of Light by Small Particles. Weinheim: Wiley.Google Scholar
Brodusch, N., Demers, H. & Gauvin, R. (2013). Nanometres-resolution Kikuchi patterns from materials science specimens with transmission electron forward scatter diffraction in the scanning electron microscope. J Microsc 250(1), 114.Google Scholar
Choi, K.-S. (2008). Shape control of inorganic materials via electrodeposition. Dalton Trans 40, 54325438.CrossRefGoogle Scholar
Dienstleder, M., Plank, H., Kothleitner, G. & Hofer, F. (2008). A novel method for precipitates preparation using extraction replicas combined with focused ion beam techniques. In 14th European Microscopy Congress, 1--5 September 2008, Aachen, Germany, pp. 807808. doi: 10.1007/978-3-540-85156-1_404.Google Scholar
Fundenberger, J.J., Morawiec, A., Bouzy, E. & Lecomte, J.S. (2003). Polycrystal orientation maps from TEM. Ultramicroscopy 96(2), 127137.CrossRefGoogle ScholarPubMed
Garcia, M.A. (2011). Surface plasmons in metallic nanoparticles: Fundamentals and applications. J Phys D Appl Phys 44(28), 283001283020.CrossRefGoogle Scholar
Glauert, A.M. (1972). Practical methods in electron microscopy. Amsterdam, New York: North-Holland Publishing Company, Sole distributors for the USA, American Elsevier Publishing Company.Google Scholar
Grzelczak, M., Perez-Juste, J., Mulvaney, P. & Liz-Marzan, L.M. (2008). Shape control in gold nanoparticle synthesis. Chem Soc Rev 37(9), 17831791.CrossRefGoogle ScholarPubMed
Guo, S.J. & Wang, E.K. (2007). Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598(2), 181192.CrossRefGoogle ScholarPubMed
He, Y., Dong, J., Choi, W., Jung, J. & Shin, K. (2012). An improved non-destructive replication metallography method for investigation of the precipitates in Cr-Mo-V turbine steel. Surf Interface Anal 44(11–12), 14111414.Google Scholar
Hwang, J.S. & Noh, D.Y. (2013). Rounding of Au nano-crystals supported on sapphire at high temperatures. J Korean Phys Soc 62(1), L6L9.Google Scholar
Jiang, N. & Silcox, J. (2004). High-energy electron irradiation and B coordination in Na2O–B2O3–SiO2 glass. J Non-Cryst Solids 342(1–3), 1217.CrossRefGoogle Scholar
Keller, R.R. & Geiss, R.H. (2012). Transmission EBSD from 10 nm domains in a scanning electron microscope. J Microsc 245(3), 245251.Google Scholar
Kracker, M., Worsch, C., Bocker, C. & Rüssel, C. (2013 a). Optical properties of dewetted thin silver/gold multilayer films on glass substrates. Thin Solid Films 539, 4754.Google Scholar
Kracker, M., Worsch, C. & Rüssel, C. (2013 b). Optical properties of palladium nanoparticles under exposure of hydrogen and inert gas prepared by dewetting synthesis of thin-sputtered layers. J Nanopart Res 15(4), 1594:110.CrossRefGoogle Scholar
Kreibig, U. & Genzel, L. (1985). Optical absorption of small metallic particles. Surf Sci 156, Pt 2, 678700.Google Scholar
Kreibig, U. & Vollmer, M. (1995). Optical Properties of Metal Clusters. Berlin Heidelberg: Springer.Google Scholar
Li, Z.L., Hite, R.K., Cheng, Y.F. & Walz, T. (2010). Evaluation of imaging plates as recording medium for images of negatively stained single particles and electron diffraction patterns of two-dimensional crystals. J Electron Microsc 59(1), 5363.Google Scholar
Mie, G. (1908). Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys (Berlin) 330(3), 377445.Google Scholar
Mitchell, D.R.G. (2008). DiffTools: Electron diffraction software tools for DigitalMicrograph (TM). Microsc Res Techniq 71(8), 588593.Google Scholar
Müller, C.M., Mornaghini, F.C.F. & Spolenak, R. (2008). Ordered arrays of faceted gold nanoparticles obtained by dewetting and nanosphere lithography. Nanotechnol 19(48), 485306:112.Google Scholar
Müller, C.M. & Spolenak, R. (2010). Microstructure evolution during dewetting in thin Au films. Acta Mater 58(18), 60356045.Google Scholar
Reimer, L. (1997). Transmission Electron Microscopy: Physics of Image Formation and Microanalysis. Berlin and New York: Springer.CrossRefGoogle Scholar
Sadan, H. & Kaplan, W. (2006). Au–Sapphire (0001) solid–solid interfacial energy. J Mater Sci 41(16), 50995107.Google Scholar
Sardar, R., Funston, A.M., Mulvaney, P. & Murray, R.W. (2009). Gold nanoparticles: Past, present, and future. Langmuir 25(24), 1384013851.Google Scholar
Schrank, C., Eisenmenger-Sittner, C., Neubauer, E., Bangert, H. & Bergauer, A. (2004). Solid state de-wetting observed for vapor deposited copper films on carbon substrates. Thin Solid Films 459(1–2), 276281.Google Scholar
Schwartz, A.J., Kumar, M. & Adams, B.L. (2000). Electron Backscatter Diffraction in Materials Science. New York: Kluwer Academic.Google Scholar
Schwarzer, R.A. (1997). Advances in crystal orientation mapping with the SEM and TEM. Ultramicroscopy 67(1–4), 1924.Google Scholar
Schwarzer, R.A. & Sukkau, J. (1998). Automated crystal orientation mapping (ACOM) with a computer-controlled TEM by interpreting transmission Kikuchi patterns. In Texture and Anisotropy of Polycrystals, Schwarzer, R.A. (Ed.), pp. 215222). Zurich-Uetikon: Transtec Publications Ltd.Google Scholar
Seyring, M., Song, X.Y. & Rettenmayr, M. (2011). Advance in orientation microscopy: Quantitative analysis of nanocrystalline structures. ACS Nano 5(4), 25802586.Google Scholar
Sha, Q.Y., Huang, G.J., Guan, J., Ma, X.J. & Li, D.H. (2011). A new route for identification of precipitates on austenite grain boundary in an Nb-V-Ti microalloyed steel. J Iron Steel Res Int 18(8), 5357.CrossRefGoogle Scholar
Song, K. & Aindow, M. (2005). A hybrid replication technique for the analysis of precipitate-boundary interactions in Ni-based superalloys. J Mater Sci 40(13), 34033407.Google Scholar
Sztwiertina, K., Bieda, M. & Sawina, G. (2006). Determination of crystallite orientations using TEM. Examples of measurements. Arch Metall Mater 51(1), 5562.Google Scholar
Thornton, J.A. (1986). The microstructure of sputter-deposited coatings. J Vac Sci Technol A 4(6), 30593065.Google Scholar
Trimby, P.W. (2012). Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope. Ultramicroscopy 120, 1624.Google Scholar
Vogel, W. (1994). Glass Chemistry. Berlin: Springer.CrossRefGoogle Scholar
Wang, Z.Y., Li, Y.H. & Adams, J.B. (2000). Kinetic lattice Monte Carlo simulation of facet growth rate. Surf Sci 450(1–2), 5163.Google Scholar
Williams, D.B. & Carter, C.B. (1996). Transmission Electron Microscopy: A Textbook for Materials Science. New York: Plenum Press.Google Scholar
Worsch, C., Kracker, M., Wisniewski, W. & Rüssel, C. (2012 a). Optical properties of self assembled oriented island evolution of ultra-thin gold layers. Thin Solid Films 520(15), 49414946.Google Scholar
Worsch, C., Wisniewski, W., Kracker, M. & Rüssel, C. (2012 b). Gold nano-particles fixed on glass. Appl Surf Sci 258(22), 85068513.Google Scholar
Yamada, K., Sato, K., Kurata, H. & Kobayashi, T. (1999). Visualization of carbon in steels using energy filtering TEM. J Electron Microsc 48(1), 915.Google Scholar
Zuo, J.M. (2000). Electron detection characteristics of a slow-scan CCD camera, imaging plates and film, and electron image restoration. Microsc Res Techniq 49(3), 245268.Google Scholar
Zuo, J.M. & Mabon, J.C. (2004). Web-based electron microscopy application software: Web-EMAPS. Microsc Microanal 10, (Suppl S02) 10001001.CrossRefGoogle Scholar