Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-15T05:19:26.078Z Has data issue: false hasContentIssue false

The Relevance of Ultrastructural Studies of Metastatic Cells from Women with Breast Cancer History

Published online by Cambridge University Press:  17 November 2021

Isabela Delfino Moreira
Affiliation:
PPG Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, RS90050-170, Brazil
André Peres
Affiliation:
POALAB, Instituto Federal do Rio Grande do Sul (IFRS), 281 Cel. Vicente St, Porto Alegre, RS90030-041, Brazil
Ariane Campos
Affiliation:
Department of Cellular and Structural Biology, Universidade Estadual de Campinas (UNICAMP), University City Zeferino Vaz, Campinas, SP13083-970, Brazil
Claudia Giuliano Bica
Affiliation:
Department of Basic Health Sciences, UFCSPA, 245 Sarmento Leite St, Porto Alegre, RS90050-170, Brazil
Giovana Tavares dos Santos
Affiliation:
Department of Social Responsibility – PROADI, Hospital Moinhos de Vento (HMV), 910 Ramiro Barcelos St, Porto Alegre, RS90035-000, Brazil
João Carlos Prolla
Affiliation:
Cytopathology Unit, Irmandade da Santa Casa de Misericórdia de Porto Alegre (ISCMPA), 75 Independência Ave, Porto Alegre, RS90035-072, Brazil
Lauren Arrusul Carús
Affiliation:
Laboratory on Innovation, Prototyping, Creative and Inclusive Education (LIPECIN), UFCSPA, 245 Sarmento Leite St, Porto Alegre, RS90050-170, Brazil
Mariana Simões Ferreira
Affiliation:
Modeling and Molecular Dynamics Laboratory (LMDM), Instituto de Biofísica Carlos Chagas Filho (IBCCF), 373 Carlos Chagas Filho Av, Rio de Janeiro, RJ21941-902, Brazil
Marilda da Cruz Fernandes
Affiliation:
Department of Basic Health Sciences, UFCSPA, 245 Sarmento Leite St, Porto Alegre, RS90050-170, Brazil
Naiane Carlesso Bassani
Affiliation:
PPG Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, RS90050-170, Brazil
Gisele Orlandi Introíni*
Affiliation:
Laboratory on Innovation, Prototyping, Creative and Inclusive Education (LIPECIN), UFCSPA, 245 Sarmento Leite St, Porto Alegre, RS90050-170, Brazil
*
*Corresponding author: Gisele Orlandi Introíni, E-mail: [email protected]
Get access

Abstract

The interaction between cancer cells and the surrounding microenvironment is determinant for metastasis success. In this study, the ultrastructural relevance of cells in the malignant pleural effusion (MPE) of women with breast cancer history was investigated. In MPE, it is possible to observe single cells and clusters. Women whose MPE presents carcinomas in aggregates have a better prognosis when compared to cases in which metastatic single cells are found. Samples were collected via fine-needle aspiration puncture (US-FNA). Subsequent to the material preparation and ultrathin cuts, they were observed using light and transmission electron microscopy (LM/TEM). LM and TEM images served as a basis for the creation of a digital sculpture using ZBrush® software. Clusters exhibited structural stability, en route vesicles allowing exocytosis of electron-dense fibrous elements, and cytoplasmic protrusions contributing to migratory and invasive skills. Single cells presented different necrotic phenotypes and many displayed leukocyte-like characteristics. Cluster cooperative relationships seem to be related to a long-term permanence in MPE. The absence of a collaborative network presumably triggers a more aggressive behavior of single cells. Its putative fusion with leukocytes can maximize the efficiency for transendothelial migration, increasing chances of metastatic success and, unfortunately, reducing survival of women with recidivism.

Type
Biological Applications
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aichel, O (1911). Uber zellverschmelzung mit qualitativ abnormer chromosomenverteilung als ursache der geschwulstbildung. In Vorträge und Aufsätze über Entvickelungsmechanik der Organismen, Roux, EW (Ed.), pp. 92111. Leipzig: W. Engelmann.Google Scholar
Amaral, JB, Urabayashi, MS & Machado-Santelli, GM (2010). Cell death and lumen formation in spheroids of MCF-7 cells. Cell Biol Int 34(3), 267274.CrossRefGoogle ScholarPubMed
Amin, A, Alkaabi, A, Al-Falasi, S & Daoud, SA (2005). Chemopreventive activities of Trigonella foenum graecum (Fenugreek) against breast cancer. Cell Biol Int 29(8), 687694.CrossRefGoogle ScholarPubMed
Brukman, NG, Uygur, B, Podbilewicz, B & Chernomordik, LV (2019). How cells fuse. J Cell Biol 218(5), 14361451.CrossRefGoogle ScholarPubMed
Camillo, ND, dos Santos, GT, Prolla, JC, Flôres, ERDS, Introíni, GO, Brackmann, RL, da Cruz, IBM & Bica, CG (2014). Impact of cell arrangement of pleural effusion in survival of patients with breast cancer. Acta Cytol 58(5), 446452.CrossRefGoogle ScholarPubMed
Coleman, RE, Gregory, W, Marshall, H, Wilson, C & Holen, I (2013). The metastatic microenvironment of breast cancer: Clinical implications. Breast 22, 5056.CrossRefGoogle ScholarPubMed
Derenzini, M, Montanaro, L & Treré, D (2009). What the nucleolus says to a tumour pathologist. Histopathology 54(6), 753762.CrossRefGoogle ScholarPubMed
Dieterich, M, Goodman, S, Rojas-Corona, R, Emralino, A, Jimenez-Joseph, D & Sherman, M (1994). Multivariate analysis of prognostic features in malignant pleural effusions from breast cancer patients. Acta Cytol 38(6), 945952.Google ScholarPubMed
Dunn, WA (1990). Studies on the mechanisms of autophagy: Formation of the autophagic vacuole. J Cell Biol 110(6), 19231933.CrossRefGoogle ScholarPubMed
Ell, B & Kang, Y (2013). Transcriptional control of cancer metastasis. Trends Cell Biol 23(12), 603611.CrossRefGoogle ScholarPubMed
Ewald, AJ, Huebner, RJ, Palsdottir, H, Lee, JK, Perez, MJ, Jorgens, DM, Tauscher, AN, Cheung, KJ, Werb, Z & Auer, M (2012). Mammary collective cell migration involves transient loss of epithelial features and individual cell migration within the epithelium. J Cell Sci 125(11), 26382654.Google ScholarPubMed
Feller-Kopman, D & Light, R (2018). Pleural disease. N Engl J Med 378(8), 740751.CrossRefGoogle ScholarPubMed
Fukuchi, M, Miyabe, Y, Furutani, C, Saga, T, Moritoki, Y, Yamada, T, Weller, PF & Ueki, S (2020). How to detect eosinophil ETosis (EETosis) and extracellular traps. Allergol Int S1323-8930(20), 3013430139.Google ScholarPubMed
Gast, CE, Silk, AD, Zarour, L, Riegler, L, Burkhart, JG, Gustafson, KT, Parappilly, MS, Roh-Johnson, M, Goodman, JR, Olson, B, Schmidt, M, Swain, JR, Davies, PS, Shasthri, V, Iizuka, S, Flynn, P, Watson, S, Korkola, J, Courtneidge, SA, Fischer, JM, Jaboin, J, Billingsley, KG, Lopez, CD, Burchard, J, Gray, J, Coussens, LM, Sheppard, BC & Wong, MH (2018). Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. Sci Adv 4(9), 116.CrossRefGoogle ScholarPubMed
Gregory, PA, Bert, AG, Paterson, EL, Barry, SC, Tsykin, A, Farshid, G, Vadas, MA, Khew-Goodall, Y & Goodall, GJ (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5), 593601.CrossRefGoogle ScholarPubMed
IARC (2020). World cancer report: Cancer research for cancer prevention. In World Cancer Report, Wild, CP, Weiderpass, E & Stewart, BW (Eds.). Lyon, France: IARC Press.Google Scholar
INCA (2019). Estimativa | 2020 Incidência de Câncer no Brasil. Rio de Janeiro, BR: INCA Press.Google Scholar
Jiang, X & Shapiro, DJ (2014). The immune system and inflammation in breast cancer. Mol Cell Endocrinol 382(1), 673682.CrossRefGoogle ScholarPubMed
Kogure, A, Kosaka, N & Ochiya, T (2019). Cross-talk between cancer cells and their neighbors via miRNA in extracellular vesicles: An emerging player in cancer metastasis. J Biomed Sci 26(1), 18.CrossRefGoogle ScholarPubMed
Kosaka, N, Yoshioka, Y, Fujita, Y & Ochiya, T (2016). Versatile roles of extracellular vesicles in cancer. J Clin Invest 126(4), 11631172.CrossRefGoogle ScholarPubMed
Le, MTN, Hamar, P, Guo, C, Basar, E, Perdigão-Henriques, R, Balaj, L & Lieberman, J (2014). MiR-200-containing extracellular vesicles promote breast cancer cell metastasis. J Clin Invest 124(12), 51095128.CrossRefGoogle ScholarPubMed
Liu, Q, Zhang, H, Jiang, X, Qian, C, Liu, Z & Luo, D (2017). Factors involved in cancer metastasis: A better understanding to “seed and soil” hypothesis. Mol Cancer 16(1), 119.CrossRefGoogle Scholar
Nahas, GR, Patel, SA, Bliss, SA & Rameshwar, P (2012). Can breast cancer stem cells evade the immune system? Curr Med Chem 19(35), 60366049.CrossRefGoogle ScholarPubMed
Naito, Y, Yoshioka, Y, Yamamoto, Y & Ochiya, T (2017). How cancer cells dictate their microenvironment: Present roles of extracellular vesicles. Cell Mol Life Sci 74(4), 697713.CrossRefGoogle ScholarPubMed
Paget, S (1889). The distribution of secondary growths in cancer of the breast. The Lancet 133(3421), 571573.CrossRefGoogle Scholar
Pawelek, JM & Chakraborty, AK (2008). Fusion of tumour cells with bone marrow-derived cells: A unifying explanation for metastasis. Nat Rev Cancer 8(5), 377386.CrossRefGoogle ScholarPubMed
Penz, E, Watt, KN, Hergott, CA, Rahman, NM & Psallidas, I (2017). Management of malignant pleural effusion: Challenges and solutions. Cancer Manag Res 9, 229241.CrossRefGoogle ScholarPubMed
Pierce, BL, Ballard-Barbash, R, Bernstein, L, Baumgartner, RN, Neuhouser, ML, Wener, MH, Baumgartner, KB, Gilliland, FB, Sorensen, BE, McTiernan, A & Ulrich, CM (2009). Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients. J Clin Oncol 27(21), 34373444.CrossRefGoogle Scholar
Roberts, ME, Neville, E, Berrisford, RG, Antunes, G & Ali, NJ (2010). Management of a malignant pleural effusion: British Thoracic Society pleural disease guideline 2010. Thorax 65(Suppl. 2), ii32ii40.CrossRefGoogle ScholarPubMed
Rodriguez, EF, Chowsilpa, S & Maleki, Z (2018). The differential diagnosis in nonlymphoproliferative malignant pleural effusion cytopathology and its correlation with patients’ demographics. Acta Cytol 62(5–6), 436442.CrossRefGoogle ScholarPubMed
Saffari, H, Hoffman, LH, Peterson, KA, Fang, JC, Leiferman, KM, Pease, LF & Gleich, GJ (2014). Electron microscopy elucidates eosinophil degranulation patterns in patients with eosinophilic esophagitis. J Allergy Clin Immunol 133(6), 18.CrossRefGoogle ScholarPubMed
Sidhu, GS & Forrester, EM (1977). Acinic cell carcinoma: Long-term survival after pulmonary metastases. Light and electron microscopic study. Cancer 40(2), 756765.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Siegel, RL, Miller, KD & Jemal, A (2016). Cancer statistics, 2016. CA: A Cancer J Clin 66(1), 730.Google ScholarPubMed
Sollberger, G, Tilley, DO & Zychlinsky, A (2018). Neutrophil extracellular traps: The biology of chromatin externalization. Dev Cell 44(5), 542553.CrossRefGoogle ScholarPubMed
Ueki, S, Melo, RCN, Ghiran, I, Spencer, LA, Dvorak, AM & Weller, PF (2013). Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood 121(11), 20742083.CrossRefGoogle ScholarPubMed
Ueki, S, Tokunaga, T, Fujieda, S, Honda, K, Hirokawa, M, Spencer, LA & Weller, PF (2016). Eosinophil ETosis and DNA traps: A new look at eosinophilic inflammation. Curr Allergy Asthma Rep 16(8), 54.CrossRefGoogle Scholar
Van Galen, KPM, Visser, HPJ, Van Der Ploeg, T & Smorenburg, CH (2010). Prognostic factors in patients with breast cancer and malignant pleural effusion. Breast J 16(6), 675677.CrossRefGoogle ScholarPubMed
Wallace, DC (2012). Mitochondria and cancer. Nat Rev Cancer 12(10), 685698.CrossRefGoogle ScholarPubMed
Weigelt, B & Bissell, MJ (2014). The need for complex 3D culture models to unravel novel pathways and identify accurate biomarkers in breast cancer. Adv Drug Deliv Rev 69–70, 4251.CrossRefGoogle ScholarPubMed
Weigelt, B, Peterse, JL & Van't Veer, LJ (2005). Breast cancer metastasis: Markers and models. Nat Rev Cancer 5(8), 591602.CrossRefGoogle ScholarPubMed
Wiley, E & Von Roenn, J (1990). Metastatic breast carcinoma in pleural fluid. Correlation of morphology with estrogen receptor activity and morphology of the primary carcinoma. Acta Cytol 34(2), 169174.Google ScholarPubMed
Xie, HY, Shao, ZM & Li, DQ (2017). Tumor microenvironment: Driving forces and potential therapeutic targets for breast cancer metastasis. Chin J Cancer 36(1), 110.CrossRefGoogle ScholarPubMed
Xulu, K, Duarte, R & Augustine, T (2020). Combined anastrozole and antiplatelet therapy treatment differentially promotes breast cancer cell survival. Microsc Microanal 26(3), 497508.CrossRefGoogle ScholarPubMed
Yang, Y, Karakhanova, S, Hartwig, W, D'Haese, JG, Philippov, PP, Werner, J & Bazhin, AV (2016). Mitochondria and mitochondrial ROS in cancer: Novel targets for anticancer therapy. J Cell Physiol 231(12), 25702581.CrossRefGoogle ScholarPubMed