Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T06:46:31.454Z Has data issue: false hasContentIssue false

Reactive Multilayers Examined by HRTEM and Plasmon EELS Chemical Mapping

Published online by Cambridge University Press:  15 January 2009

M.A. Mat Yajid*
Affiliation:
Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD, UK
G. Möbus
Affiliation:
Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD, UK
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

We examine chemical mapping of reaction phases in a Cu-Al multilayer system using low-loss electron energy loss spectroscopy spectrum imaging and image spectroscopy techniques. The sensitivity of the plasmon peak position and shape to various crystal structures and phases is exploited using postprocessing of spectra into second derivative plasmon maps and line scans. Analytical transmission electron microscopy is complemented by studies of the orientation relationship of the multilayer system using high-resolution electron microscopy of interfaces and selected area diffraction. The techniques have been applied to the Cu-Al multilayer sample and sharply bound epitaxial phases are found, before and after heat treatment.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blobaum, K.J., Reiss, M.E., Plitzko Lawrence, J.M. & Weihs, T.P. (2003). Deposition and characterization of a self-propagating CuOx/Al thermite reaction in a multilayer foil geometry. J Appl Phys 94(5), 29152922.CrossRefGoogle Scholar
Campisano, S.U., Costanzo, E., Scaccianoce, F. & Cristofolini, R. (1978). Growth kinetics of the [theta] phase in Al-Cu thin film bilayers. Thin Solid Films 52(1), 97101.CrossRefGoogle Scholar
Cha, L., Scheu, C., Richter, G., Wagner, T., Sturm, S. & Ruhle, M. (2007). First observation of a hexagonal close packed metastable intermetallic phase between Cu and Al bilayer films. Int J Mater Res 98(8), 692699.CrossRefGoogle Scholar
Comstock, R.L. (2002). Review modern magnetic materials in data storage. J Mater Sci: Mater Electr 13(9), 509523.Google Scholar
Davies, S., Huang, T.S., Gass, M.H., Papworth, A.J., Joyce, T.B. & Chalker, P.R. (2004). Fabrication of GaN cantilevers on silicon substrates for microelectromechanical devices. Appl Phys Lett 84(14), 25662568.CrossRefGoogle Scholar
Dehm, G., Scheu, C., Ruhle, M. & Raj, R. (1998). Growth and structure of internal Cu/Al2O3 and Cu/Ti/Al2O3 interfaces. Acta Materialia 46(3), 759772.CrossRefGoogle Scholar
Dutkiewicz, J., Morgiel, J. & Salawa, J. (1984). Effect of titanium on the structure and mechanical properties of Cu-Al-Ti alloys. J Mater Sci 19(1), 2430.CrossRefGoogle Scholar
Egerton, R.F. (2007). Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy. Ultramicroscopy 107(8), 575586.CrossRefGoogle Scholar
Eggeman, A.S., Dobson, P.J. & Petford-Long, A.K. (2007). Optical spectroscopy and energy-filtered transmission electron microscopy of surface plasmons in core-shell nanoparticles. J Appl Phys 101(2), 024307.Google Scholar
Gavens, A.J., Van Heerden, D., Mann, A.B., Reiss, M.E. & Weihs, T.P. (2000). Effect of intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils. J Appl Phys 87(3), 12551263.CrossRefGoogle Scholar
Gershinskii, A.E., Fomin, B.I., Cherepov, E.I. & Edelman, F.L. (1977). Investigation of diffusion in the Cu-Al thin film system. Thin Solid Films 42(3), 269275.CrossRefGoogle Scholar
Hofmann, M., Gemming, T., Menzel, S. & Wetzig, K. (2003). Microstructure of Al/Ti metallization layers. Z Metallkunde 94(3), 317322.CrossRefGoogle Scholar
Howe, J.M. & Oleshko, V.P. (2004). Application of valence electron energy-loss spectroscopy and plasmon energy mapping for determining material properties at the nanoscale. J Electr Microsc 53(4), 339351.CrossRefGoogle ScholarPubMed
Jeanguillaume, C. & Colliex, C. (1989). Spectrum-image: The next step in EELS digital acquisition and processing. Ultramicroscopy 28(1–4), 252257.CrossRefGoogle Scholar
Jiang, H.G., Dai, J.Y., Tong, H.Y., Ding, B.Z., Song, Q.H. & Hu, Z.Q. (1993). Interfacial reactions on annealing Cu/Al multilayer thin-films. J Appl Phys 74(10), 61656169.CrossRefGoogle Scholar
Lasagni, A., Holzapfel, C., Weirich, T. & Mucklich, F. (2007). Laser interference metallurgy: A new method for periodic surface microstructure design on multilayered metallic thin films. Appl Surf Sci 253(19), 80708074.CrossRefGoogle Scholar
Mat Yajid, M.A., Wagner, T. & Möbus, G. (2008). Plasmon energy chemical phase mapping of reactive multilayers. physica status solidi (RRL). Rapid Res Lett 2(1), 79.Google Scholar
Mayer, J., Eigenthaler, U., Plitzko, J.M. & Dettenwanger, F. (1997). Quantitative analysis of electron spectroscopic imaging series. Micron 28(5), 361370.CrossRefGoogle Scholar
Menon, L., Patibandla, S., Bhargava Ram, K., Shkuratov, S.I., Aurongzeb, D. & Holtz, M. (2004). Ignition studies of Al/Fe2O3 energetic nanocomposites. Appl Phys Lett 84(23), 47354737.CrossRefGoogle Scholar
Misra, A., Kung, H. & Embury, J.D. (2004). Preface to the viewpoint set on: Deformation and stability of nanoscale metallic multilayers. Scr Mater 50(6), 707710.CrossRefGoogle Scholar
Montcalm, C., Sullivan, B.T., Ranger, M., Slaughter, J.M., Kearney, P.A., Falco, M., Charles, M. & Chaker, M. (1994). Mo/Y multilayer mirrors for the 8–12-nm wavelength region. Opt Lett 19(13), 10041006.CrossRefGoogle ScholarPubMed
Rajan, K. & Wallach, E.R. (1980). A transmission electron microscopy study of intermetallic formation in aluminium-copper thin-film couples. J Crystal Growth 49(2), 297302.CrossRefGoogle Scholar
Rayne, J.A., Shearer, M.P. & Bauer, C.L. (1980). Investigation of interfacial reactions in thin film couples of aluminum and copper by measurement of low temperature contact resistance. Thin Solid Films 65(3), 381391.Google Scholar
Sigle, W. (2005). Analytical transmission electron microscopy. Ann Rev Mater Res 35, 239314.CrossRefGoogle Scholar
Sigle, W., Kramer, S., Varshney, V., Zern, A., Eigenthaler, U. & Ruhle, M. (2003). Plasmon energy mapping in energy-filtering transmission electron microscopy. Ultramicroscopy 96(3–4), 565571.CrossRefGoogle ScholarPubMed
Thiam, M.M., Hrncir, T., Matolin, V. & Nehasil, V. (2004). EELS and AES investigation of Rh thin film growth on polycrystalline Al substrate. Vacuum 74(2), 141145.CrossRefGoogle Scholar
Thomas, P.J. & Midgley, P.A. (2001). Image-spectroscopy—I. The advantages of increased spectral information for compositional EFTEM analysis. Ultramicroscopy 88(3), 179186.CrossRefGoogle ScholarPubMed
Vandenberg, J.M. & Hamm, R.A. (1982). An in situ X-ray study of phase formation in Cu-Al thin film couples. Thin Solid Films 97(4), 313323.CrossRefGoogle Scholar
Wang, Z.L. (1996). Valence electron excitations and plasmon oscillations in thin films, surfaces, interfaces and small particles. Micron 27(3–4), 265299.CrossRefGoogle Scholar
Wolverton, C. & Ozolins, V. (2001). Entropically favored ordering: The metallurgy of Al_{2}Cu revisited. Phys Rev Lett 86(24), 5518.CrossRefGoogle ScholarPubMed