No CrossRef data available.
Published online by Cambridge University Press: 02 July 2020
Following injury to peripheral nerves, processes involved in regeneration must be activated, restoring the original architecture and synaptic connections of the neuron. This is essential for the efficient operation of the sophisticated communications network of the nervous system. In order to accomplish these tasks, complex changes occur in gene expression. Regenerating neurons shift into a growth mode wherein large amounts of cytoskeletal proteins and other growth-associated proteins are produced. These materials, which are synthesized and produced in the neuronal cell body, are then transferred to the axon via axonal transport systems. Among the cytoskeletal and associated proteins upregulated following injury to the CNS are actin, tubulin and the intermediate filament-associated protein, IFAP-70/280kD. The latter is the subject of this investigation.
Intermediate filaments (IF) are a major constituent of the cytoskeleton of most eukaryotic cells. The IF cytoskeleton is a highly dynamic structure that reorganizes continuously as the cell divides and changes shape in response to its environment.