Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T18:02:05.621Z Has data issue: false hasContentIssue false

Quantitative Position-Averaged K-, L-, and M-Shell Core-Loss Scattering in STEM

Published online by Cambridge University Press:  13 May 2014

Ye Zhu
Affiliation:
Monash Centre for Electron Microscopy, Monash University, Victoria 3800, Australia Department of Materials Engineering, Monash University, Victoria 3800, Australia
Christian Dwyer*
Affiliation:
Monash Centre for Electron Microscopy, Monash University, Victoria 3800, Australia Ernst Ruska-Centre and Peter Grünberg Institute, Forschungszentrum Jülich, Jülich D-52425, Germany
*
*Corresponding author.[email protected]
Get access

Abstract

We present a quantitative comparison between experimental position-averaged core-loss scattering from K-, L-, and M-shells of various elements and simulations based on a single-particle description of the core-loss process. To facilitate a direct comparison free of adjustable or compensating parameters, we compare absolute scattering cross-sections for zone-axis-aligned crystals whose thicknesses have been measured independently. The results show that the single-particle model accurately predicts the absolute scattering intensity from K-shells, and L-shells in some cases, but achieves only semi-quantitative agreement for M-shells.

Type
FEMMS Special Issue
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, L.J., Findlay, S.D., Lupini, A.R., Oxley, M.P. & Pennycook, S.J. (2003). Atomic-resolution electron energy loss spectroscopy imaging in aberration corrected scanning transmission electron microscopy. Phys Rev Lett 91, 105503.Google Scholar
Bosman, M., Keast, V., García-Muñoz, J., D’alfonso, A., Findlay, S. & Allen, L. (2007). Two-dimensional mapping of chemical information at atomic resolution. Phys Rev Lett 99(8), 086102.CrossRefGoogle ScholarPubMed
Botton, G.A., Lazar, S. & Dwyer, C. (2010). Elemental mapping at the atomic scale using low accelerating voltages. Ultramicroscopy 110(8), 926934.Google Scholar
Coene, W. & Van Dyck, D. (1990). Inelastic scattering of high-energy electrons in real space. Ultramicroscopy 33(4), 261267.CrossRefGoogle Scholar
Colliex, C., Bocher, L., De La Pena, F., Gloter, A., March, K. & Walls, M. (2010). Atomic scale STEM-EELS mapping across functional interfaces. J Mater 62, 5357.Google Scholar
Cosgriff, E.C., Oxley, M.P., Allen, L.J. & Pennycook, S.J. (2005). The spatial resolution of imaging using core-loss spectroscopy in the scanning transmission electron microscope. Ultramicroscopy 102, 317326.Google Scholar
Cowan, R.D. (1981). The Theory of Atomic Structure and Spectra . London: University of California Press.Google Scholar
D’Alfonso, A.J., Findlay, S.D., Oxley, M.P. & Allen, L.J. (2008). Volcano structure in atomic resolution core-loss images. Ultramicroscopy 108, 677687.Google Scholar
De Groot, F.M.F. (2005). Multiplet effects in X-ray spectroscopy. Coord Chem Rev 249, 3163.Google Scholar
De Groot, F.M.F., Fuggle, J.C., Thole, B.T. & Sawatzky, G.A. (1990). L 2,3 x-ray-absorption edges of d 0 compounds: K+, Ca2+, Sc3+, and Ti4+ in O h (octahedral) symmetry. Phys Rev B 41, 928937.Google Scholar
Dwyer, C. (2005 a). Multislice theory of fast electron scattering incorporating atomic inner-shell ionization. Ultramicroscopy 104, 141151.Google Scholar
Dwyer, C. (2005 b). Relativistic effects in atomic inner-shell ionization by a focused electron probe. Phys Rev B 72, 144102.Google Scholar
Dwyer, C. (2010). Simulation of scanning transmission electron microscope images on desktop computers. Ultramicroscopy 110, 195198.CrossRefGoogle ScholarPubMed
Dwyer, C. (2012). Fano resonance in atomic-resolution spectroscopic imaging of solids. Phys Rev B 86, 094119.Google Scholar
Dwyer, C., Findlay, S.D. & Allen, L.J. (2008). Multiple elastic scattering of core-loss electrons in atomic resolution imaging. Phys Rev B 77, 184107.Google Scholar
Egerton, R.F. (1989). Quantitative analysis of electron-energy-loss spectra. Ultramicroscopy 28, 215225.Google Scholar
Egerton, R.F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Springer.Google Scholar
Gunawan, L., Lazar, S., Gautreau, O., Harnagea, C., Pignolet, A. & Botton, G.A. (2009). Locating La atoms in epitaxial Bi3.25La0.75Ti3O12 films through atomic resolution electron energy loss spectroscopy mapping. Appl Phys Lett 95, 192902.CrossRefGoogle Scholar
Kimoto, K., Asaka, T., Nagai, T., Saito, M., Matsui, Y. & Ishizuka, K. (2007). Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450, 702704.Google Scholar
Kirkland, E.J. (2010). Advanced Computing in Electron Microscopy, 2nd ed. New York: Plenum Press.Google Scholar
Kourkoutis, L.F., Parker, M., Vaithyanathan, V., Schlom, D.G. & Muller, D.A. (2011). Direct measurement of electron channeling in a crystal using scanning transmission electron microscopy. Phys Rev B 84, 075485.Google Scholar
Kourkoutis, L.F., Xin, H.L., Higuchi, T., Hotta, Y., Lee, J., Hikita, Y., Schlom, D.G., Hwang, H. & Muller, D.A. (2010). Atomic resolution spectroscopic imaging of oxide interfaces. Philos Mag 90(35–36), 47314749.Google Scholar
Lazar, S., Shao, Y., Gunawan, L., Nechache, R., Pignolet, A. & Botton, G.A. (2010). Imaging, core-loss, and low-loss electron-energy-loss spectroscopy mapping in aberration-corrected STEM. Microsc Microanal 16, 416424.CrossRefGoogle ScholarPubMed
Leapman, R.D., Rez, P. & Mayers, D.F. (1980). K, L, and M shell generalized oscillator strengths and ionization cross sections for fast electron collisions. J Chem Phys 72, 12321243.Google Scholar
Lebeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2008). Quantitative atomic resolution scanning transmission electron microscopy. Phys Rev Lett 100, 206101.Google Scholar
Lebeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2010). Position averaged convergent beam electron diffraction: Theory and applications. Ultramicroscopy 110, 118125.Google Scholar
Loane, R.F., Xu, P. & Silcox, J. (1991). Thermal vibrations in convergent-beam electron diffraction. Acta Crystallogr, A 47(3), 267278.Google Scholar
Manoubi, T., Colliex., C. & Rez., P. (1990). Quantitative electron energy loss spectroscopy on M45 edges in rare earth oxides. J Electron Spectros Relat Phenomena 50, 118.Google Scholar
Muller, D.A., Kourkoutis, L.F., Murfitt, M., Song, J.H., Hwang, H.Y., Silcox, J., Dellby, N. & Krivanek, O.L. (2008). Atomic scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319(5866), 10731076.Google Scholar
Mundy, J.A., Mao, Q., Brooks, C.M., Schlom, D.G. & Muller, D.A. (2012). Atomic-resolution chemical imaging of oxygen local bonding environments by electron energy loss spectroscopy. Appl Phys Lett 101, 042907.Google Scholar
Okunishi, E., Sawada, H., Kondo, Y. & Kersker, M. (2006). Atomic resolution elemental map of EELS with a Cs corrected STEM. Microsc Microanal 12(Supp 2), 11501151.Google Scholar
Rez, P. (1982). Cross-sections for energy loss spectrometry. Ultramicroscopy 9, 283288.Google Scholar
Rossouw, C.J., Dwyer, C., Katz-Boon, H. & Etheridge, J. (2014). Channelling contrast analysis of lattice images: Conditions for probe-insensitive STEM. Ultramicroscopy 136, 216223.CrossRefGoogle ScholarPubMed
Tan, H., Turner, S., Yücelen, E., Verbeeck, J. & Van Tendeloo, G. (2011). 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy. Phys Rev Lett 107, 107602.Google Scholar
Thole, B.T., Van Der Laan, G., Fuggle, J.C., Sawatzky, G.A., Karnatak, R.C. & Esteva, J.-M. (1985). 3d x-ray-absorption lines and the 3d 94f n+1 multiplets of the lanthanides. Phys Rev B 32, 51075118.Google Scholar
Voyles, P.M., Grazul, J.L. & Muller, D.A. (2003). Imaging individual atoms inside crystals with ADF-STEM. Ultramicroscopy 96, 251273.Google Scholar
Weng, X. & Rez, P. (1988). Solid State effects on core electron cross-sections used in microanalysis. Ultramicroscopy 25, 345348.CrossRefGoogle Scholar
Xin, H.L., Dwyer, C. & Muller, D.A. (2014). Is there a Stobbs factor in atomic-resolution STEM-EELS mapping? Ultramicroscopy 139, 3846.Google Scholar
Xin, H.L., Zhu, Y. & Muller, D.A. (2012). Determining on-axis crystal thickness with quantitative position-averaged incoherent bright-field signal in an aberration-corrected STEM. Microsc Microanal 18(4), 720727.Google Scholar
Yoshioka, H. (1957). Effect of inelastic waves on electron diffraction. J Phys Soc Jpn 12, 618628.Google Scholar
Zhu, Y., Soukiassian, A., Schlom, D.G., Muller, D.A. & Dwyer, C. (2013). Towards artifact-free atomic-resolution elemental mapping with electron energy-loss spectroscopy. Appl Phys Lett 103, 141908.Google Scholar