Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T06:53:25.189Z Has data issue: false hasContentIssue false

Quantitative Mineralogical Properties (Morphology-Chemistry-Structure) of Pharmaceutical Grade Kaolinites and Recommendations to Regulatory Agencies

Published online by Cambridge University Press:  18 January 2012

Meral Dogan
Affiliation:
Department of Geological Engineering, Hacettepe University, Ankara, Turkey
A. Umran Dogan*
Affiliation:
Earth Science Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, USA
Aktham Aburub
Affiliation:
College of Pharmacy, University of Iowa, Iowa City, IA, USA
Alta Botha
Affiliation:
The Center for Advanced Drug Development, University of Iowa, Iowa City, IAUSA
Dale Eric Wurster
Affiliation:
Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, USA College of Pharmacy, University of Iowa, Iowa City, IA, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

The physical and chemical characteristics of kaolinite (kaolin) may be variable, and minor amounts of other clay minerals, nonclay minerals, and other impurities may affect the properties of kaolinites. Thus specific technical properties of pharmaceutical grade kaolinites become very important because these clays are used in medical applications, e.g., as pharmaceutical excipients, and will be consumed by humans. Seven pharmaceutical grade kaolinite specimens were used in this study: K1004, KA105, 2242-01, K2-500, Acros, Acros-mono, and KX0007-1. In addition, two kaolinites from the Clay Minerals Society Source Clays, KGa-1b and KGa-2, were used for comparison purposes. The Acros-mono and 2242-01 kaolinites contained minor amounts of illite, which was demonstrated both compositionally and structurally by using inductively coupled plasma spectroscopy and powder X-ray diffraction. The KX0007-1 kaolinite powder was found to be heavily contaminated with quartz, cristobalite, and alunite. Crystal structure computations also showed excess Si in its tetrahedral site, and the mineral no longer has the typical kaolinite crystal structure. These widely-used industrial standards should be quantitatively characterized morphologically, compositionally, and structurally. Results of the mineralogical characteristics should be clearly labeled on the pharmaceutical grade kaolinites and reported to the relevant regulatory agencies.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Ely Lilly and Company, Pharmaceutical Sciences R&D, Indianapolis, IN, USA

Present address: Afrivet Business Management (Pty) Ltd, Faerie Glen 0043, South Africa

References

REFERENCES

Adamis, Z. & Williams, R.B. (2005). Bentonite, Kaolin, and Selected Clay Minerals. Environmental Health Criteria 231. Geneva: World Health Organization.Google Scholar
Alexander, K.S., Azizi, J., Dollimore, D. & Patel, F.A. (1989). An interpretation of the sedimentation behavior of pharmaceutical kaolin and other kaolin preparations in aqueous environments. Drug Devel Ind Pharm 15, 25592582.CrossRefGoogle Scholar
Antilen, M., Forster, J.E., Del Confetto, S., Rodier, E., Fudym, O., Venezia, A.M., Deganello, G. & Escudey, M. (2004). Characterization of the porous structure of Chilean volcanic soils by nitrogen adsorption and mercury porosimetry. J Chilean Chem Soc 49, 313318.CrossRefGoogle Scholar
Aparicio, P., Perez-Bernal, J.L., Galan, E. & Bello, M.A. (2004). Kaolin fractal dimension—Comparison with other properties. Clay Mineral 39, 7584.CrossRefGoogle Scholar
Borden, D. & Giese, R.F. (2001). Baseline studies of the Clay Minerals Society Source Clays: Cation exchange capacity measurements by the ammonia-electrode method. Clay Clay Mineral 49, 444445.CrossRefGoogle Scholar
Breiner, J.M., Anderson, M.A., Tom, H.W.K. & Graham, R.C. (2006). Properties of surface-modified colloidal particles. Clay Clay Miner 54, 1224.CrossRefGoogle Scholar
Brunauer, S., Emmett, P.H. & Teller, E. (1938). Adsorption of gases in multimolecular layers. J Am Chem Soc 60, 309319.CrossRefGoogle Scholar
Chandrasekhar, S. & Ramaswamy, S. (2002). Influence of mineral impurities on the properties of kaolin and its thermally treated products. Appl Clay Sci 21, 133142.CrossRefGoogle Scholar
Chipera, S.J. & Bish, D.L. (2001). Baseline studies of the Clay Minerals Society Source Clays: Powder X-ray diffraction analyses. Clay Clay Mineral 49, 398409.CrossRefGoogle Scholar
Chung, F.H. (1974a). Quantitative interpretation of X-ray diffraction patterns, I. Matrix-flushing method of quantitative multicomponent analysis. J Appl Crystallogr 7, 513519.CrossRefGoogle Scholar
Chung, F.H. (1974b). Quantitative interpretation of X-ray diffraction patterns, II. Adiabatic principle of X-ray diffraction analysis of mixtures. J Appl Crystallogr 7, 526531.CrossRefGoogle Scholar
Chung, F.H. (1975). Quantitative interpretation of X-ray diffraction patterns, III. Simultaneous determination of a set of reference intensities. J Appl Crystallogr 8, 1719.CrossRefGoogle Scholar
Colina, F.G., Abellan, M.N. & Caballero, I. (2006). High-temperature reaction of kaolin with ammonium sulfate. Ind Eng Chem Res 45, 495502.CrossRefGoogle Scholar
Colina, F.G. & Costa, J. (2005). High-temperature reaction of kaolin with sodium hydrogen sulfate. Ind Eng Chem Res 44, 44954500.CrossRefGoogle Scholar
Dogan, A.U., Dogan, M., Onal, M., Sarikaya, Y., Aburub, A. & Wurster, D.E. (2006). Baseline studies of the Clay Minerals Society source clays: Specific surface area by the Brunauer Emmett Teller (BET) method. Clay Clay Mineral 54, 6266.CrossRefGoogle Scholar
Dogan, M., Dogan, A.U., Yesilyurt, F.I., Alaygut, D., Buckner, I. & Wurster, D.E. (2007). Baseline studies of the Clay Minerals Society special clays: Specific surface area by the Brunauer Emmett Teller (BET) method. Clay Clay Mineral 55, 534541.CrossRefGoogle Scholar
Elmore, A.R. (2003). Final report on the safety assessment of aluminum silicate, calcium silicate, magnesium aluminum silicate, magnesium silicate, magnesium trisilicate, sodium magnesium silicate, zirconium silicate, attapulgite, bentonites, Fuller's earth, hectorite, kaolin, lithium magnesium silicate, lithium magnesium, sodium silicate, montmorillonite, pyrophyllite, and zeolite. Int J Toxicol 22, 37102.Google Scholar
Franco, P., Perez-Maqueda, L.A. & Perez-Rodriguez, J.L. (2004). The effect of ultrasound on the particle size and structural disorder of a well-ordered kaolinite. J Colloid Interf Sci 274, 107117.CrossRefGoogle ScholarPubMed
Grim, R.E. (1968). Clay Mineralogy, 2nd ed. New York: McGraw-Hill.Google Scholar
Guggenheim, S. & Van Groos, A.F.K. (2001). Baseline studies of the Clay Minerals Society Source Clays: Thermal analyses. Clay Clay Mineral 49, 433443.CrossRefGoogle Scholar
Harben, P.W. (2002). The Industrial Minerals Handbook—A Guide to Markets, Specifications, and Prices, 4th ed. Worcester Park, UK: Industrial Minerals Information Services.Google Scholar
IARC (1997). Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Volume 42: Silica and Some Silicates, pp. 225239. Geneva: World Health Organization, International Agency for Research on Cancer.Google Scholar
Kahle, M., Kleber, M. & Jahn, R. (2004). Retention of dissolved organic matter by phyllosilicate and soil clay fractions in relation to mineral properties. Organic Geochem 35, 269276.CrossRefGoogle Scholar
Kakali, G., Perraki, T., Tsivilis, S. & Badogiannis, E. (2001). Thermal treatment of kaolin: The effect of mineralogy on the pozzolanic activity. Appl Clay Sci 20, 7380.CrossRefGoogle Scholar
Kameda, J., Saruwatari, K. & Tanaka, H. (2004). H-2 generation during dry grinding of kaolinite. J Colloid Interf Sci 275, 225228.CrossRefGoogle Scholar
Kanket, W., Suddhiprakarn, A., Kheoruenromne, I. & Gilkes, R.J. (2005). Chemical and crystallographic properties of kaolin from Ultisols in Thailand. Clay Clay Minerals 53, 478489.CrossRefGoogle Scholar
Kendall, T. (Ed.) (1996). Industrial Clays. London: Industrial Minerals Information Ltd.Google Scholar
Kibbe, A.H. (2000). Handbook of Pharmaceutical Excipients, 3rd ed. Washington, DC: American Pharmaceutical Association.Google Scholar
Kogel, J.E. & Lewis, S.A. (2001). Baseline studies of the Clay Minerals Society Source Clays: Chemical analyses by inductively-coupled plasma-mass spectroscopy (ICP-MS). Clay Clay Mineral 49, 387392.CrossRefGoogle Scholar
Ksiezopolska, A. & Ksiezopolski, J. (2005). Specific surface area of synthetic organomineral complexes. Russian J Phys Chem 79(Suppl 1), S146S150.Google Scholar
Lipson, S.M. & Stotzky, G. (1983). Adsorption of reovims to clay minerals: Effects of cation exchange capacity, cation saturation, and surface area. Appl Environ Microbiol 46, 673682.CrossRefGoogle ScholarPubMed
Lopez-Galindo, A. & Viseras, C. (2004). Pharmaceutical and cosmetic applications of clays. In Clay Surfaces: Fundamentals and Applications, Wypych, F. & Satyanarayana, K.G. (Eds.), pp. 267289. Amsterdam: Elsevier.CrossRefGoogle Scholar
Lopez-Galindo, A., Viseras, C. & Cerezo, P. (2007). Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Appl Clay Sci 36, 5163.CrossRefGoogle Scholar
Madejova, J. & Komadel, P. (2001). Baseline studies of the Clay Minerals Society Source Clays: Infrared methods. Clay Clay Mineral 49, 410432.CrossRefGoogle Scholar
Madhusoodana, C.D., Kameshima, Y., Nakajima, A., Okada, K., Kogure, T. & Mackenzie, K.J.D. (2006). Synthesis of high surface area Al-containing mesoporous silica from calcined and acid leached kaolinites as their precursor. J Colloid Interf Sci 297, 724731.CrossRefGoogle Scholar
Mako, E., Senkar, Z., Kristof, J. & Vagvolgyi, V. (2006). Surface modification of mechanochemically activated kaolinites by selective leaching. J Colloid Interf Sci 294, 362370.CrossRefGoogle ScholarPubMed
Mermut, A.R. & Cano, A.F. (2001). Baseline studies of the Clay Minerals Society Source Clays: Chemical analyses of major elements. Clay Clay Mineral 49, 381386.CrossRefGoogle Scholar
Meunier, A. (2005). Clays. Heidelberg: Springer.Google Scholar
Moll, W.F. (2001). Baseline studies of the Clay Minerals Society Source Clays: Geological origin. Clay Clay Mineral 49, 374380.CrossRefGoogle Scholar
Moore, D.E. & Reynolds, R.C. (1997). X-Ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed. New York: Oxford University Press.Google Scholar
Murray, H.H. (1991). Overview—Clay mineral application. Appl Clay Sci 5, 379395.CrossRefGoogle Scholar
Murray, H.H. (1999). Applied clay mineralogy today and tomorrow. Clay Mineral 34, 3949.CrossRefGoogle Scholar
Murray, H.H., Bundy, W. & Harvey, C. (1993). Kaolin: Genesis and Utilization. Publication No. 1. Boulder, CO: The Clay Minerals Society.CrossRefGoogle Scholar
Murray, H.H. & Keller, W.D. (1993). Kaolins, kaolins, and kaolins. In Kaolin: Genesis and Utilization, Murray, H., Bundy, W. & Harvey, C. (Eds.), pp. 124. Boulder, CO: The Clay Minerals Society.CrossRefGoogle Scholar
Okada, M., Yoshizaki, H., Kameshima, Y. & Nakajima, A. (2008). Effect of the crystallinity of kaolinite precursor on the properties of mesoporous silicas. Appl Clay Sci 41, 1016.CrossRefGoogle Scholar
Rowe, R.C., Sheskey, P.J. & Owen, S.C. (Eds.) (2006). Pharmaceutical Excipients. London: Pharmaceutical Press.Google Scholar
Rowe, R.C., Sheskey, P.J. & Weller, P.J. (Eds.) (2003). Handbook of Pharmaceutical Excipients, 4th ed. Washington, DC: Pharmaceutical Press and the American Pharmaceutical Association.Google Scholar
Schiffenbauer, M. & Stotzky, G. (1982). Adsorption of coliphages T1 and T7 to clay minerals. Appl Environ Microbiol 43, 590596.CrossRefGoogle ScholarPubMed
Trakoonyingcharoen, P., Kheoruenromne, I., Suddhiprakarn, A. & Gilkes, R.J. (2006). Properties of kaolins in red Ultisols in Thailand. Appl Clay Sci 32, 2539.CrossRefGoogle Scholar
Velde, B. (Ed.) (1995). Origin of Mineralogy of Clays; Clays and the Environment. Berlin: Springer.CrossRefGoogle Scholar
Virta, R.L. (2004). Clay and Shale. U.S. Geological Survey. Available at http://minerals.usgs.gov/minerals/pubs/commodity/clays/claysmyb04.pdf.Google Scholar
Wu, W.J. (2001). Baseline studies of the Clay Minerals Society Source Clays: Colloid and surface phenomena. Clay. Clay Mineral 49, 446452.CrossRefGoogle Scholar