Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T06:15:56.791Z Has data issue: false hasContentIssue false

Quantitative Energy Dispersive X-Ray Analysis of Submicrometric Particles Using a Scanning Electron Microscope

Published online by Cambridge University Press:  06 September 2011

Luigi Paoletti
Affiliation:
Dipartimento di Tecnologie e Salute, Istituto Superiore di Sanità, V.le Regina Elena, 299 – I-00161 Roma, Italy
Biagio M. Bruni
Affiliation:
Dipartimento di Tecnologie e Salute, Istituto Superiore di Sanità, V.le Regina Elena, 299 – I-00161 Roma, Italy
Antonio Gianfagna
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Roma “La Sapienza”, P.le A.Moro, 5 – I-00185 Roma, Italy
Simona Mazziotti-Tagliani
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Roma “La Sapienza”, P.le A.Moro, 5 – I-00185 Roma, Italy
Alessandro Pacella*
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Roma “La Sapienza”, P.le A.Moro, 5 – I-00185 Roma, Italy
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

The quantitative scanning electron microscope–energy dispersive X-ray (SEM-EDX) analysis of a horneblende and two augite prismatic samples reduced to submicrometric particles was performed, and error due to the particle effects (“absent mass” and the “reduced absorption” effect) was minimized. Correction factors as a function of fragment size were obtained for O, Na, Mg, Si, Ca, and Fe. In addition, the influence of chemical composition of the samples used as standards (the matrix effect) on correction factors was evaluated. The results indicate that the absent mass effect is dominant for all elements except for the light elements O and Na, for which the reduced absorption effect is dominant. No significant matrix effect has been observed. By using corrected SEM-EDX data, the error on quantification of the element concentration has been estimated to be 3% relative for light elements and below 2% relative for heavy elements (notably, about 1% relative for Fe).

Type
Microanalysis Applications
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreozzi, G.B., Ballirano, P., Gianfagna, A., Mazziotti-Tagliani, S. & Pacella, A. (2009). Structural and spectroscopic characterization of a suite of fibrous amphiboles with high environmental and health relevance from Biancavilla (Sicily, Italy). Am Mineral 94, 13331340.Google Scholar
Ballirano, P., Andreozzi, G.B. & Belardi, G. (2008). Crystal chemical and structural characterization of fibrous tremolite from Susa Valley, Italy, with comments on potential harmful effects on human health. Am Mineral 93, 13491355.Google Scholar
Ballirano, P., Andreozzi, G.B., Dogan, M. & Dogan, A.U. (2009). Crystal structure and iron topochemistry of erionite-K from Rome, Oregon, USA. Am Mineral 94, 12621270.Google Scholar
Cardile, V., Lombardo, L., Belluso, E., Panico, A.M., Renis, M., Gianfagna, A. & Balazy, M. (2007). Fluoro-edenite fibers induce expression of Hsp70 and inflammatory response. Int J Environ Res Public Health 4, 195202.Google Scholar
Cliff, G. & Lorimer, G.W. (1975). The quantitative analysis of thin specimens. J Microsc 103, 203207.Google Scholar
Fantauzzi, M., Pacella, A., Atzei, D., Gianfagna, A., Andreozzi, G.B. & Rossi, A. (2010). Combined use of X-ray photoelectron and Mössbauer spectroscopic techniques in the analytical characterization of iron oxidation state in amphibole asbestos. Anal Bioanal Chem 396, 28892898.Google Scholar
Favero-Longo, S.E., Castelli, D., Salvadori, O., Belluso, E. & Piervittori, R. (2005). Pedogenetic action of the lichens Lecidea atrobrunnea, Rhizocarpon geographicum gr. and Sporastatia testudinea on serpentinized ultramafic rocks in an alpine environment. Int Biodet Biodegrad 56, 1727.Google Scholar
Fubini, B., Fenoglio, I., Elias, Z. & Poirot, O. (2001). On the variability of the biological responses to silicas: Effect of origin, crystallinity and state of the surface on the generation of reactive oxygen species and consequent morphological transformations in cells. J Environ Pathol Toxicol Oncol 20, 87100.Google Scholar
Gazzano, E., Riganti, C., Tomatis, M., Turci, F., Bosia, A., Fubini, B. & Ghigo, D. (2005). Potential toxicity of nonregulated asbestiform minerals: Balangeroite from the western Alps. Part 3: Depletion of antioxidant defenses. J Toxicol Environ Health 68, 4149.Google Scholar
Gianfagna, A., Ballirano, P., Bellatreccia, F., Bruni, B.M., Paoletti, L. & Oberti, R. (2003). Characterization of amphibole fibers linked to mesothelioma in the area of Biancavilla, Eastern Sicily, Italy. Mineral Mag 67, 12211229.Google Scholar
Goldstein, J.I., Newbury, P., Echlin, D.E., Joy, D.C., Romig, A.D., Lyman, C.E., Fiori, C. & Lifshin, E. (1992). Scanning Electron Microscopy and X-Ray Microanalysis, 2nd ed., p. 349. New York: Plenum Press.Google Scholar
Gunter, M.E., Dyar, M.D., Twamley, B., Foit, F.F. Jr. & Cornelius, C. (2003). Composition, Fe3+/ΣFe, and crystal structure of non-asbestiform and asbestiform amphiboles from Libby, Montana, U.S.A. Am Mineral 88, 19701978.Google Scholar
Laskin, A. & Cowin, J.P. (2001). Automated single-particle SEM-EDX analysis of submicrometer particles down 0.1 μm. Anal Chem 73, 10231029.Google Scholar
Maarks, M., Vennemann, T., Siebel, W. & Markl, G. (2003). Quantification of magamtic and hydrothermal process in a peralkaline syenite-alkali granite complex based on textures, phase equilibria, and stable and radiogenic isotopes. J Petrol 44(7), 12471280.Google Scholar
Paoletti, L., Bruni, B.M., Arrizza, L., Mazziotti-Tagliani, S. & Pacella, A. (2008). A micro-analytical SEM-EDS method applied to the quantitative chemical compositions of fibrous amphiboles. Per Min 77(2), 6373.Google Scholar
Pugnaloni, A., Lucarini, G., Giantomassi, F., Lombardo, L., Capella, S., Belluso, E., Zizzi, A., Panico, A.M., Biagini, G. & Cardile, V. (2007). In vitro study of biofunctional indicators after exposure to asbestos-like fluoro-edenite fibres. Cellular Molec Biol 53, 965980.Google Scholar
Ro, C., Osan, J., Szaloki, I., De Hoog, J., Worobiec, A. & Van Grieken, R. (2003). A Monte Carlo program for quantitative electron-induced X-ray analysis of individual particles. Anal Chem 75, 851859.Google Scholar
Scott, V.D., Love, G. & Reed, S.J.B. (1995). Quantitative Electron Probe Microanalysis, 2nd ed., Chap. XIV. New York: Ellis Horwood.Google Scholar
Small, J.A. (2002). The analysis of particles at low accelerating voltages (≤10 kV) with energy dispersive X-ray spectroscopy (EDS). J Res Natl Inst Stand Technol 107(6), 555566.Google Scholar
Soffritti, M., Minardi, F., Bua, L., Degli Esposti, D. & Belpoggi, F. (2004). First experimental evidence of peritoneal and pleural mesotheliomas induced by fluro-edenite fibres in Etnean volcanic material from Biancavilla (Sicily, Italy). Eur J Oncol 9, 169175.Google Scholar