Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T11:52:43.435Z Has data issue: false hasContentIssue false

Quantitative Determination of How Growth Conditions Affect the 3D Composition of InGaAs Nanowires

Published online by Cambridge University Press:  18 February 2019

Jiangtao Qu
Affiliation:
School of Physics, Camperdown, New South Wales, Australia The Australian Institute for Nanoscale Science and Technology, The University of Sydney, Sydney, NSW 2006, Australia
Hansheng Chen
Affiliation:
School of Physics, Camperdown, New South Wales, Australia The Australian Institute for Nanoscale Science and Technology, The University of Sydney, Sydney, NSW 2006, Australia
Mansoor Khan
Affiliation:
School of Physics, Camperdown, New South Wales, Australia The Australian Institute for Nanoscale Science and Technology, The University of Sydney, Sydney, NSW 2006, Australia
Fan Yun
Affiliation:
School of Physics, Camperdown, New South Wales, Australia The Australian Institute for Nanoscale Science and Technology, The University of Sydney, Sydney, NSW 2006, Australia
Xiangyuan Cui
Affiliation:
Aerospace, Mechanical and Mechatronic Engineering, the University of Sydney, 2006 NSW, Australia
Simon P. Ringer
Affiliation:
Aerospace, Mechanical and Mechatronic Engineering, the University of Sydney, 2006 NSW, Australia
Julie M. Cairney
Affiliation:
Aerospace, Mechanical and Mechatronic Engineering, the University of Sydney, 2006 NSW, Australia
Rongkun Zheng*
Affiliation:
School of Physics, Camperdown, New South Wales, Australia The Australian Institute for Nanoscale Science and Technology, The University of Sydney, Sydney, NSW 2006, Australia
*
*Author for correspondence: Rongkun Zheng, E-mail: [email protected]
Get access

Abstract

Covering a broad optical spectrum, ternary InxGa1−xAs nanowires, grown by bottom-up methods, have been receiving increasing attention due to the tunability of the bandgap via In composition modulation. However, inadequate knowledge about the correlation between growth and properties restricts our ability to take advantage of this phenomenon for optoelectronic applications. Here, three different InGaAs nanowires were grown under different experimental conditions and atom probe tomography was used to quantify their composition, allowing the direct observation of the nanowire composition associated with the different growth conditions.

Type
Materials Science: Non-Metals
Copyright
Copyright © Microscopy Society of America 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, R, Bernal, RA, Isheim, D & Espinosa, HD (2011). Characterizing atomic composition and dopant distribution in wide band gap semiconductor nanowires using laser-assisted atom probe tomography. J Phys Chem C 115(36), 1768817694.Google Scholar
Chen, R & Dayeh, SA (2017). Recordings and analysis of atomic ledge and dislocation movements in InGaAs to nickelide nanowire phase transformation. Small 13(30), 1604117.Google Scholar
Chou, YC, Wen, CY, Reuter, MC, Su, D, Stach, EA & Ross, FM (2012). Controlling the growth of Si/Ge nanowires and heterojunctions using silver-gold alloy catalysts. ACS Nano 6(7), 64076415.Google Scholar
Cui, X-Y & Ringer, SP (2018). On the nexus between atom probe microscopy and density functional theory simulations. Mater Charact 146, 347358.Google Scholar
Dasgupta, NP, Sun, J, Liu, C, Brittman, S, Andrews, SC, Lim, J, Gao, H, Yan, R & Yang, P (2014). 25th anniversary article: Semiconductor nanowires--synthesis, characterization, and applications. Adv Mater 26(14), 21372184.Google Scholar
Diercks, D, Gorman, BP, Cheung, CL & Wang, G (2009). Techniques for consecutive TEM and atom probe tomography analysis of nanowires. Microsc Microanal 15(S2), 254255.Google Scholar
Du, S, Burgess, T, Loi, ST, Gault, B, Gao, Q, Bao, P, Li, L, Cui, X, Kong Yeoh, W, Tan, HH, Jagadish, C, Ringer, SP & Zheng, R (2013). Full tip imaging in atom probe tomography. Ultramicroscopy 124, 96101.Google Scholar
Ek, M & Filler, MA (2017). Atomic-scale choreography of vapor-liquid-solid nanowire growth. Acc Chem Res 51(1), 118126.Google Scholar
Frolov, IA, Boldyrevskii, PB, Druz, BL & Sokolov, EB (1977). Mechanism of epitaxial-growth of Gaas in system Ga(Ch3)3-Ash3-H2. Inorg Mater 13(5), 632634.Google Scholar
Gault, B, Moody, MP, Cairney, JM & Ringer, SP (2012). Atom Probe Microscopy. New York: Springer-Verlag New York.Google Scholar
Guo, YN, Burgess, T, Gao, Q, Tan, HH, Jagadish, C & Zou, J (2013 a). Polarity-driven nonuniform composition in InGaAs nanowires. Nano Lett 13(11), 50855089.Google Scholar
Guo, YN, Xu, HY, Auchterlonie, GJ, Burgess, T, Joyce, HJ, Gao, Q, Tan, HH, Jagadish, C, Shu, HB, Chen, XS, Lu, W, Kim, Y & Zou, J (2013 b). Phase separation induced by Au catalysts in ternary InGaAs nanowires. Nano Lett 13(2), 643650.Google Scholar
Han, HS, Han, GS, Kim, JS, Kim, DH, Hong, JS, Caliskan, S, Jung, HS, Cho, IS & Lee, JK (2016). Indium-tin-oxide nanowire array based CdSe/CdS/TiO2 one-dimensional heterojunction photoelectrode for enhanced solar hydrogen production. Acs Sustain Chem Eng 4(3), 11611168.Google Scholar
Henkelman, G, Uberuaga, BP & Jonsson, H (2000). A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22), 99019904.Google Scholar
Heurlin, M, Stankevic, T, Mickevicius, S, Yngman, S, Lindgren, D, Mikkelsen, A, Feidenhans'l, R, Borgstrom, MT & Samuelson, L (2015). Structural properties of Wurtzite InP-InGaAs nanowire core-shell heterostructures. Nano Lett 15(4), 24622467.Google Scholar
Hiscocks, SER & Hume-Rothery, W (1964). The equilibrium diagram of the system gold-indium. Proc R Soc A: Math, Phys and Eng Sci 282(1390), 13.Google Scholar
Huang, X, Wang, ZJ, Weinberg, G, Meng, XM & Willinger, MG (2015). In situ scanning electron microscopy observation of growth kinetics and catalyst splitting in vapor-liquid-solid growth of nanowires. Adv Funct Mater 25(37), 59795987.Google Scholar
Jiang, N, Wong-Leung, J, Joyce, HJ, Gao, Q, Tan, HH & Jagadish, C (2014). Understanding the true shape of Au-catalyzed GaAs nanowires. Nano Lett 14(10), 58655872.Google Scholar
Kim, H, Lee, WJ, Farrell, AC, Morales, JSD, Senanayake, P, Prikhodko, SV, Ochalski, TJ & Huffaker, DL (2017). Monolithic InGaAs nanowire array lasers on silicon-on-insulator operating at room temperature. Nano Lett 17(6), 34653470.Google Scholar
Kim, Y, Joyce, HJ, Gao, O, Tan, HH, Jagadish, C, Paladugu, M, Zou, J & Suvorova, AA (2006). Influence of nanowire density on the shape and optical properties of ternary InGaAs nanowires. Nano Lett 6(4), 599604.Google Scholar
Kresse, G & Furthmuller, J (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16), 1116911186.Google Scholar
Krylyuk, S, Davydov, AV & Levin, I (2011). Tapering control of Si nanowires grown from SiCl4 at reduced pressure. ACS Nano 5(1), 656664.Google Scholar
Larsen, CA, Buchan, NI & Stringfellow, GB (1988). Reaction-mechanisms in the organometallic vapor-phase epitaxial-growth of Gaas. Appl Phys Lett 52(6), 480482.Google Scholar
Larson, DJ, Prosa, TJ, Ulfig, RM, Geiser, BP & Kelly, TF (2013). Local Electrode Atom Probe Tomography. New York: Springer-Verlag.Google Scholar
Lim, JW, Hippalgaonkar, K, Andrews, SC, Majumdar, A & Yang, PD (2012). Quantifying surface roughness effects on phonon transport in silicon nanowires. Nano Lett 12(5), 24752482.Google Scholar
MacDonald, E & Wicker, R (2016). Multiprocess 3D printing for increasing component functionality. Science 353(6307), aaf2093.Google Scholar
Maliakkal, CB, Hatui, N, Bapat, RD, Chalke, BA, Rahman, AA & Bhattacharya, A (2016). The mechanism of Ni-assisted GaN nanowire growth. Nano Lett 16(12), 76327638.Google Scholar
Martin, JH, Yahata, BD, Hundley, JM, Mayer, JA, Schaedler, TA & Pollock, TM (2017). 3D printing of high-strength aluminium alloys. Nature 549(7672), 365-+.Google Scholar
McHugh, KJ, Nguyen, TD, Linehan, AR, Yang, D, Behrens, AM, Rose, S, Tochka, ZL, Tzeng, SY, Norman, JJ, Anselmo, AC, Xu, X, Tomasic, S, Taylor, MA, Lu, J, Guarecuco, R, Langer, R & Jaklenec, A (2017). Fabrication of fillable microparticles and other complex 3D microstructures. Science 357(6356), 1138-+.Google Scholar
Nagashima, K, Yoshida, H, Klamchuen, A, Kanai, M, Meng, G, Zhuge, FW, He, Y, Anzai, H, Zhu, ZT, Suzuki, M, Boudot, M, Takeda, S & Yanagida, T (2016). Tailoring nucleation at two interfaces enables single crystalline NiO nanowires via vapor liquid solid route. ACS Appl Mater Interfaces 8(41), 2789227899.Google Scholar
Perdew, JP, Burke, K & Ernzerhof, M (1996). Generalized gradient approximation made simple. Phys Rev Lett 77(18), 38653868.Google Scholar
Persson, AI, Larsson, MW, Stenstrom, S, Ohlsson, BJ, Samuelson, L & Wallenberg, LR (2004). Solid-phase diffusion mechanism for GaAs nanowire growth. Nat Mater 3(10), 677681.Google Scholar
Qu, J, Du, S, Burgess, T, Wang, C, Cui, X, Gao, Q, Wang, W, Tan, HH, Liu, H, Jagadish, C, Zhang, Y, Chen, H, Khan, M, Ringer, S & Zheng, R (2017). 3D atomic-scale insights into anisotropic core-shell-structured InGaAs nanowires grown by metal-organic chemical vapor deposition. Adv Mater 29, 1701888.Google Scholar
Qu, JT, Choi, W, Mohseni, PK, Li, XL, Zhang, YJ, Chen, HS, Ringer, S & Zheng, RK (2016). Direct observation of dopants distribution and diffusion in GaAs planar nanowires with atom probe tomography. ACS Appl Mater Interfaces 8(39), 2624426250.Google Scholar
Qu, JT, Ringer, S & Zheng, RK (2015). Atomic-scale tomography of semiconductor nanowires. Mater Sci Semicond Process 40, 896909.Google Scholar
Shen, LF, Yip, S, Yang, ZX, Fang, M, Hung, T, Pun, EYB & Ho, JC (2015). High-performance wrap-gated InGaAs nanowire field-effect transistors with sputtered dielectrics. Sci Rep 5, 16871.Google Scholar
Sugiyama, M, Kusunoki, K, Shimogaki, Y, Sudo, S, Nakano, Y, Nagamoto, H, Sugawara, K, Tada, K & Komiyama, H (1997). Kinetic studies on thermal decomposition of MOVPE sources using Fourier transform infrared spectroscopy. Appl Surf Sci 117, 746752.Google Scholar
Svensson, J, Dey, AW, Jacobsson, D & Wernersson, LE (2015). III-V nanowire complementary metal-oxide semiconductor transistors monolithically integrated on Si. Nano Lett 15(12), 78987904.Google Scholar
Wagner, RS & Ellis, WC (1964). Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett 4(5), 8990.Google Scholar
Wallentin, J, Anttu, N, Asoli, D, Huffman, M, Aberg, I, Magnusson, MH, Siefer, G, Fuss-Kailuweit, P, Dimroth, F, Witzigmann, B, Xu, HQ, Samuelson, L, Deppert, K & Borgstrom, MT (2013). Inpnanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 339(6123), 10571060.Google Scholar
Wang, CY, Zhang, GS, Ge, SH, Xu, T, Ji, Y, Yang, XG & Leng, YJ (2016). Lithium-ion battery structure that self-heats at low temperatures. Nature 529(7587), 515.Google Scholar
Wibowo, E, Othaman, Z, Sakrani, S & Sumpono, I (2011). The advantage of low growth temperature and V/III ratio for InxGa1-xAs nanowires growth. Nano 6(2), 159165.Google Scholar
Yang, P, Yan, R & Fardy, M (2010). Semiconductor nanowire: What's next? Nano Lett 10(5), 15291536.Google Scholar
Yang, ZX, Liu, LZ, Yip, SP, Li, DP, Shen, LF, Zhou, ZY, Han, N, Hung, TF, Pun, EYB, Wu, XL, Song, AM & Ho, JC (2017). Complementary metal oxide semiconductor-compatible, high-mobility, <111>-oriented GaSb nanowires enabled by vapor-solid-solid chemical vapor deposition. ACS Nano 11(4), 42374246.-oriented+GaSb+nanowires+enabled+by+vapor-solid-solid+chemical+vapor+deposition.+ACS+Nano+11(4),+4237–4246.>Google Scholar
Zhang, Y, Sanchez, AM, Wu, J, Aagesen, M, Holm, JV, Beanland, R, Ward, T & Liu, H (2015). Polarity-driven quasi-3-fold composition symmetry of self-catalyzed III-V-V ternary core-shell nanowires. Nano Lett 15(5), 31283133.Google Scholar
Zou, J, Paladugu, M, Wang, H, Auchterlonie, GJ, Guo, YN, Kim, Y, Gao, Q, Joyce, HJ, Tan, HH & Jagadish, C (2007). Growth mechanism of truncated triangular III-V nanowires. Small 3(3), 389393.Google Scholar
Supplementary material: File

Qu et al. supplementary material

Qu et al. supplementary material 1

Download Qu et al. supplementary material(File)
File 5.8 MB