Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T04:24:28.291Z Has data issue: false hasContentIssue false

Quantitative Assessment of P-Glycoprotein Expression and Function Using Confocal Image Analysis

Published online by Cambridge University Press:  27 August 2014

Zahra Hamrang*
Affiliation:
Manchester Pharmacy School, University of Manchester, Stopford Building, Manchester, M13 9PT, UK
Yamini Arthanari
Affiliation:
Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK
David Clarke
Affiliation:
Manchester Pharmacy School, University of Manchester, Stopford Building, Manchester, M13 9PT, UK
Alain Pluen*
Affiliation:
Manchester Pharmacy School, University of Manchester, Stopford Building, Manchester, M13 9PT, UK
*
*Corresponding authors. [email protected], [email protected].
*Corresponding authors. [email protected], [email protected].
Get access

Abstract

P-glycoprotein is implicated in clinical drug resistance; thus, rapid quantitative analysis of its expression and activity is of paramout importance to the design and success of novel therapeutics. The scope for the application of quantitative imaging and image analysis tools in this field is reported here at “proof of concept” level. P-glycoprotein expression was utilized as a model for quantitative immunofluorescence and subsequent spatial intensity distribution analysis (SpIDA). Following expression studies, p-glycoprotein inhibition as a function of verapamil concentration was assessed in two cell lines using live cell imaging of intracellular Calcein retention and a routine monolayer fluorescence assay. Intercellular and sub-cellular distributions in the expression of the p-glycoprotein transporter between parent and MDR1-transfected Madin–Derby Canine Kidney cell lines were examined. We have demonstrated that quantitative imaging can provide dose–response parameters while permitting direct microscopic analysis of intracellular fluorophore distributions in live and fixed samples. Analysis with SpIDA offers the ability to detect heterogeniety in the distribution of labeled species, and in conjunction with live cell imaging and immunofluorescence staining may be applied to the determination of pharmacological parameters or analysis of biopsies providing a rapid prognostic tool.

Type
Biological Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anger, G.J., Cressman, A.M. & Piquette-Miller, M. (2012). Expression of ABC efflux transporters in placenta from women with insulin-managed diabetes. PLoS One 7(4), e35027.CrossRefGoogle ScholarPubMed
Arques, O., Chicote, I., Tenbaum, S., Puig, I. & Palmer, H.G. (2012). Standardized Relative Quantification of Immunofluorescence Tissue Staining. Protocol Exchange (Nature), doi:10.1038/protex.2012.008.Google Scholar
Blot, V. & McGraw, T.E. (2008). Use of quantitative immunofluorescence microscopy to study intracellular trafficking. Methods Mol Biol 457, 120.CrossRefGoogle ScholarPubMed
Bogush, T., Tikhomirov, M., Dudko, E., Sinitsyna, M., Ramanauskaite, R., Polotsky, B., Tjulandin, S. & Davydov, M. (2012). Quantitative immunofluorescence estimation of Pgp expression in human solid tumors by flow cytometry. Moscow Univ Chem Bull 67(3), 142148.CrossRefGoogle Scholar
Colombo, P.C., Ashton, A.W., Celaj, S.T., Ashok, B., Javier, E., Dubois Nicholas, B., Marinaccio, M., Malla, S., Lachmann, J., Ware, J.A. & Le Jemtel, T.H. (2002). Biopsy coupled to quantitative immunofluorescence: a new method to study the human vascular endothelium. J Appl Physiol 92(3), 13311338.CrossRefGoogle Scholar
Cook, J.A., Feng, B., Fenner, K.S., Kempshall, S.L., Ray, R.C., Smith, D.A., Troutman, M.D., Ullah, M. & Lee, C.A. (2009). Refining the in vitro and in vivo critical parameters for p-glycoprotein, [I]/IC50 and [I2]/IC50, that allow for the exclusion of drug candidates from clinical digoxin interaction studies. Mol Pharm 7(2), 398411.CrossRefGoogle Scholar
Dietrich, C.G., Geier, A. & Oude Elferink, R.P.J. (2003). ABC of oral bioavailability: transporters as gatekeepers in the gut. Gut 52(12), 17881795.CrossRefGoogle ScholarPubMed
Eriksson, A.H., Rønsted, N., Güler, S., Jäger, A.K., Sendra, J.R. & Brodin, B. (2012). In-vitro evaluation of the P-glycoprotein interactions of a series of potentially CNS-active Amaryllidaceae alkaloids. J Pharm Pharmacol 64(11), 16671677.CrossRefGoogle ScholarPubMed
Feng, B., Mills, J.B., Davidson, R.E., Mireles, R.J., Janiszewski, J.S., Troutman, M.D., de Morais, S.M. (2008). In vitro p-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system. Drug Metab Dispos 36(2), 268275.CrossRefGoogle ScholarPubMed
Gabrielsson, J. & Weiner, D. (1997). Pharmacokinetic and Pharmacodynamic Data Analysis: Concepts and Applications. Stockholm: Pharmaceutical Press.Google Scholar
Godin, A.G., Costantino, S., Lorenzo, L.-E, Swift, J.L., Sergeev, M., Ribeiro-da-Silva, A., De Koninck, Y. & Wiseman, P.W. (2011). Revealing protein oligomerization and densities in situ using spatial intensity distribution analysis. Proc Natl Acad Sci 108(17), 70107015.CrossRefGoogle ScholarPubMed
Greiner, B., Eichelbaum, M., Fritz, P., Kreichgauer, H.P., Von Richter, O. & Zundler, J. (1999). The role of intestinal p-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest 104(2), 147153.CrossRefGoogle ScholarPubMed
Hirabayashi, H., Sugimoto, H., Matsumoto, S., Amano, N. & Moriwaki, T. (2011). Development of a quantification method for digoxin, a typical P-glycoprotein probe in clinical and non-clinical studies, using high performance liquid chromatography-tandem mass spectrometry: The usefulness of negative ionization mode to avoid competitive adduct-ion formation. J Chromatogr B Analyt Technol Biomed Life Sci 879(32), 38373844.CrossRefGoogle ScholarPubMed
Kirkpatrick, D.S., Gerber, S.A. & Gygi, S.P. (2005). The absolute quantification strategy: A general procedure for the quantification of proteins and post-translational modifications. Methods 35(3), 265273.CrossRefGoogle Scholar
Krasznai, Z.T., Friedlander, E., Nagy, A., Szabo, G., Vereb, G., Goda, K. & Hernadi, Z. (2005). Quantitative and functional assay of MDR1/P170-mediated MDR in ascites cells of patients with ovarian cancer. Anticancer Res 25(2A), 11871192.Google ScholarPubMed
Litman, T., Zeuthen, T., Skovsgaard, T. & Stein, W.D. (1997). Structure-activity relationships of P-glycoprotein interacting drugs: Kinetic characterization of their effects on ATPase activity. Biochim Biophys Acta 1361(2), 159168.CrossRefGoogle ScholarPubMed
Löscher, W. & Potschka, H. (2005). Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. Neurotherapeutics 2(1), 8698.CrossRefGoogle ScholarPubMed
McMullen, R.L., Bauza, E., Gondran, C., Oberto, G., Domloge, N., Farra, C.D. & Moore, D.J. (2010). Image analysis to quantify histological and immunofluorescent staining of ex vivo skin and skin cell cultures. Int J Cosmet Sci 32(2), 143154.CrossRefGoogle ScholarPubMed
Miliotis, T., Ali, L., Palm, J.E., Lundqvist, A.J., Ahnoff, M., Andersson, T.B. & Hilgendorf, C. (2011). Development of a highly sensitive method using liquid chromatography-multiple reaction monitoring to quantify membrane P-glycoprotein in biological matrices and relationship to transport function. Drug Metab Dispos 39(12), 24402449.CrossRefGoogle ScholarPubMed
Mokin, M. & Keifer, J. (2006). Quantitative analysis of immunofluorescent punctate staining of synaptically localized proteins using confocal microscopy and stereology. J Neurosci Methods 157(2), 218224.CrossRefGoogle ScholarPubMed
Neurophotonics (2010). Spatial intensity distribution analysis software (retrieved October 8, 2012), http://neurophotonics.ca/software.Google Scholar
Polli, J.W., Wring, S.A., Humphreys, J.E., Huang, L., Morgan, J.B., Webster, L.O. & Serabjit-Singh, C.S. (2001). Rational use of in vitro p-glycoprotein assays in drug discovery. J Pharmacol Exper Ther 299(2), 620628.Google ScholarPubMed
Rautio, J., Humphreys, J.E., Webster, L.O., Balakrishnan, A., Keogh, J.P., Kunta, J.R., Serabjit-Singh, C.J. & Polli, J.W. (2006). In vitro P-glycoprotein inhibition assays for assessment of clinical drug ineraction potential of new drug candidates: A recommendation for probe substrates. Drug Metab Dispos 34(5), 786792.CrossRefGoogle Scholar
Scarborough, G. (1995). Drug-stimulated ATPase activity of the human P-glycoprotein. J Bioenerg Biomembr 27(1), 3741.CrossRefGoogle ScholarPubMed
Taub, M.E., Podila, L., Ely, D. & Almeida, I. (2005). Functional assessment of multiple p-glycoprotein probe substrates: Influence of cell line and modulator concentration on p-gp activity. Drug Metab Dispos 33(11), 16791687.CrossRefGoogle ScholarPubMed
Supplementary material: File

Hamrang Supplementary Material

Supplementary Information

Download Hamrang Supplementary Material(File)
File 2.4 MB
Supplementary material: File

Hamrang Supplementary Material

Supplementary Information

Download Hamrang Supplementary Material(File)
File 431.8 KB