Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T09:03:13.009Z Has data issue: false hasContentIssue false

Quantitative Annular Dark Field Electron Microscopy Using Single Electron Signals

Published online by Cambridge University Press:  29 October 2013

Ryo Ishikawa*
Affiliation:
Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831, USA
Andrew R. Lupini*
Affiliation:
Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831, USA
Scott D. Findlay
Affiliation:
School of Physics, Monash University, Victoria 3800, Australia
Stephen J. Pennycook
Affiliation:
Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831, USA
*
*Corresponding author. E-mail: [email protected]
**Corresponding author. E-mail: [email protected]
Get access

Abstract

One of the difficulties in analyzing atomic resolution electron microscope images is that the sample thickness is usually unknown or has to be fitted from parameters that are not precisely known. An accurate measure of thickness, ideally on a column-by-column basis, parameter free, and with single atom accuracy, would be of great value for many applications, such as matching to simulations. Here we propose such a quantification method for annular dark field scanning transmission electron microscopy by using the single electron intensity level of the detector. This method has the advantage that we can routinely quantify annular dark field images operating at both low and high beam currents, and under high dynamic range conditions, which is useful for the quantification of ultra-thin or light-element materials. To facilitate atom counting at the atomic scale we use the mean intensity in an annular dark field image averaged over a primitive cell, with no free parameters to be fitted. To illustrate the potential of our method, we demonstrate counting the number of Al (or N) atoms in a wurtzite-type aluminum nitride single crystal at each primitive cell over the range of 3–99 atoms.

Type
Techniques, Software, and Instrumentation Development
Copyright
Copyright © Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burle Industries, Inc. (1980). Photomultiplier Handbook. Lancaster, PA: Burle Industries, Inc. Google Scholar
Dwyer, C., Maunders, C., Zheng, C.L., Weyl, M., Tiemeijer, P.C. & Etheridge, J. (2012). Sub-0.1 nm-resolution quantitative scanning transmission electron microscopy without adjustable parameters. App Phys Lett 100, 191915. CrossRefGoogle Scholar
Egerton, R.F. (1996). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Plenum Press.CrossRefGoogle Scholar
Findlay, S.D. & LeBeau, J.M. (2013). Detector non-uniformity in scanning transmission electron microscopy. Ultramicroscopy 124, 5260.CrossRefGoogle ScholarPubMed
Grieb, T., Müller, K., Fritz, R., Schowalter, M., Neugebohrn, N., Knaub, N., Volz, K. & Rosenauer, A. (2012). Determination of the chemical composition of GaNAs using STEM HAADF imaging and STEM strain state analysis. Ultramicroscopy 117, 1523.CrossRefGoogle Scholar
Howie, A. (2004). Hunting the Stobbs factor. Ultramicroscopy 98(2-4), 7379.CrossRefGoogle ScholarPubMed
Hÿtch, M.J. & Stobbs, W.M. (1994). Quantitative comparison of high resolution TEM images with image simulations. Ultramicroscopy 53(3), 191203.CrossRefGoogle Scholar
Klenov, D.O., Findlay, S.D., Allen, L.J. & Stemmer, S. (2007). Influence of orientation on the contrast of high-angle annular dark-field images of silicon. Phys Rev B 76(1), 014111. CrossRefGoogle Scholar
Klenov, D.O. & Stemmer, S. (2006). Contributions to the contrast in experimental high-angle annular dark-field images. Ultramicroscopy 106(10), 889901.CrossRefGoogle Scholar
Knoll, G.F. (1989). Radiation Detection and Measurement. New York: John Wiley & Sons, Inc. Google Scholar
Krivanek, O.L., Chisholm, M.F., Nicolosi, V., Pennycook, T.J., Corbin, G.J., Dellby, N., Murfitt, M.F., Own, C.S., Szilagyi, Z.S., Oxley, M.P., Pantelides, S.T. & Pennycook, S.J. (2010). Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464(7288), 571574.CrossRefGoogle ScholarPubMed
Krivanek, O.L., Corbin, G.J., Dellby, N., Elston, B.F., Keyse, R.J., Murfitt, M.F., Own, C.S., Szilagyi, Z.S. & Woodruff, J.W. (2008). An electron microscope for the aberration-corrected era. Ultramicroscopy 108(3), 179195.CrossRefGoogle ScholarPubMed
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2008). Quantitative atomic resolution scanning transmission electron microscopy. Phys Rev Lett 100(20), 206101. CrossRefGoogle ScholarPubMed
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2010a). Position averaged convergent beam electron diffraction: Theory and applications. Ultramicroscopy 110(2), 118125.CrossRefGoogle ScholarPubMed
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2010b). Standardless atom counting in scanning transmission electron microscopy. Nano Lett 10(11), 44054408.CrossRefGoogle ScholarPubMed
LeBeau, J.M., Findlay, S.D., Wang, X., Jacobson, A.J., Allen, L.J. & Stemmer, S. (2009). High-angle scattering of fast electrons from crystals containing heavy elements: Simulation and experiment. Phys Rev B 79(21), 214110. CrossRefGoogle Scholar
LeBeau, J.M. & Stemmer, S. (2008). Experimental quantification of annular dark-field images in scanning transmission electron microscopy. Ultramicroscopy 108(12), 16531658.CrossRefGoogle ScholarPubMed
Loane, R.F., Xu, P. & Silcox, J. (1991). Thermal vibrations in convergent-beam electron diffraction. Acta Cryst A 47(3), 267278.CrossRefGoogle Scholar
Mares, J.A., Nikl, M., Beitlerova, A., D'Ambrosio, C., de Notaristefani, F., Blazek, K., Maly, P. & Nejezchleb, K. (2003). Scintillation photoelectron Nphels(E) and light LY(E) yields of YAP:Ce and YAG:Ce crystals. Opt Mater 24(1-2), 281284.CrossRefGoogle Scholar
Mashlan, M., Jancik, D. & Kholmetskii, A. (2003). YAG:Ce and YAP:Ce—Suitable Fast Detectors for Transmission Mössbauer Spectroscopy, pp. 673678. The Netherlands: Kluwer Academic Publishers.Google Scholar
Pennycook, S.J. & Boatner, L.A. (1988). Chemically sensitive structure-imaging with a scanning transmission electron microscope. Nature 336(6199), 565567.CrossRefGoogle Scholar
Pennycook, S.J. & Nellist, P.D. (2011). Scanning Transmission Electron Microscopy Imaging and Analysis. New York, Dordrechet, Heidelberg, London: Springer.CrossRefGoogle Scholar
Schulz, H. & Thiemann, K.H. (1977). Crystal structure refinement of AlN and GaN. Solid State Commun 23(11), 815819.CrossRefGoogle Scholar
Shibata, N., Goto, A., Choi, S.-Y., Mizoguchi, T., Findlay, S.D., Yamamoto, T. & Ikuhara, Y. (2008). Direct imaging of reconstructed atoms on TiO2 (110) surfaces. Science 322(5901), 570573.CrossRefGoogle ScholarPubMed
Thust, A. (2009). High-resolution transmission electron microscopy on an absolute contrast scale. Phys Rev Lett 102(22), 220801. CrossRefGoogle Scholar
Treacy, M.M.J. (2011). Z dependence of electron scattering by single atoms into annular dark-field detectors. Microsc Microanal 17(6), 847858.CrossRefGoogle ScholarPubMed
Van Aert, S., Batenburg, K.J., Rossell, M.D., Erni, R. & Van Tendeloo, G. (2011). Three-dimensional atomic imaging of crystalline nanoparticles. Nature 470, 374377.CrossRefGoogle ScholarPubMed
Van Aert, S., de Backer, A., Martinez, G.T., Goris, B., Bals, S., Van Tendeloo, G. & Rosenauer, A. (2013). Procedure to count atoms with trustworthy single-atom sensitivity. Phys Rev B 87(6), 064107. CrossRefGoogle Scholar
Xin, H.L., Zhu, Y. & Muller, D.A. (2012). Determining on-axis crystal thickness with quantitative position-averaged incoherent bright-field signal in an aberration-corrected STEM. Microsc Microanal 18(4), 720727.CrossRefGoogle Scholar
Zhou, W., Oxley, M.P., Lupini, A.R., Krivanek, O.L., Pennycook, S.J. & Idrobo, J.-C. (2012). Single atom microscopy. Microsc Microanal 18(6), 13421354.CrossRefGoogle ScholarPubMed