Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T08:32:14.370Z Has data issue: false hasContentIssue false

Quantifying the Effects of Beam Overlap on Radiation Damage via Radiolysis Products in the In-situ Liquid (S)TEM Cell

Published online by Cambridge University Press:  30 July 2020

Juhan Lee
Affiliation:
University of Liverpool, Liverpool, England, United Kingdom
Daniel Nicholls
Affiliation:
University of Liverpool, Liverpool, England, United Kingdom
Nigel Browning
Affiliation:
Sivananthan Laboratories, Inc., Bolingbrook, Illinois, United States
B. Layla Mehdi
Affiliation:
University of Liverpool, Liverpool, England, United Kingdom

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
In Situ TEM at the Extremes - Liquid environment
Copyright
Copyright © Microscopy Society of America 2020

References

de Jonge, N.; Ross, F. M., Electron microscopy of specimens in liquid. Nature Nanotechnology 2011, 6, 695.10.1038/nnano.2011.161CrossRefGoogle ScholarPubMed
Woehl, T. J.; Evans, J. E.; Arslan, I.; Ristenpart, W. D.; Browning, N. D., Direct in Situ Determination of the Mechanisms Controlling Nanoparticle Nucleation and Growth. ACS Nano 2012, 6, (10), 85998610.10.1021/nn303371yCrossRefGoogle ScholarPubMed
Mehdi, B. L.; Stevens, A.; Kovarik, L.; Jiang, N.; Mehta, H.; Liyu, A.; Reehl, S.; Stanfill, B.; Luzi, L.; Hao, W.; Bramer, L.; Browning, N. D., Controlling the spatio-temporal dose distribution during STEM imaging by subsampled acquisition: In-situ observations of kinetic processes in liquids. Appl. Phys. Lett. 2019, 115, (6), 063102.10.1063/1.5096595CrossRefGoogle Scholar
Mehdi, B. L.; Stevens, A.; Qian, J.; Park, C.; Xu, W.; Henderson, W. A.; Zhang, J.-G.; Mueller, K. T.; Browning, N. D., The Impact of Li Grain Size on Coulombic Efficiency in Li Batteries. Scientific Reports 2016, 6, 34267.10.1038/srep34267CrossRefGoogle ScholarPubMed
Grogan, J. M.; Schneider, N. M.; Ross, F. M.; Bau, H. H., Bubble and Pattern Formation in Liquid Induced by an Electron Beam. Nano Lett. 2014, 14, (1), 359364.10.1021/nl404169aCrossRefGoogle ScholarPubMed
Schneider, N. M.; Norton, M. M.; Mendel, B. J.; Grogan, J. M.; Ross, F. M.; Bau, H. H., Electron–Water Interactions and Implications for Liquid Cell Electron Microscopy. The Journal of Physical Chemistry C 2014, 118, (38), 2237322382.10.1021/jp507400nCrossRefGoogle Scholar
Wang, C.; Shokuhfar, T.; Klie, R. F., Precise In Situ Modulation of Local Liquid Chemistry via Electron Irradiation in Nanoreactors Based on Graphene Liquid Cells. Adv. Mater. 2016, 28, (35), 77167722.10.1002/adma.201602273CrossRefGoogle ScholarPubMed
Downing, K. H., Spot-Scan Imaging in Transmission Electron Microscopy. Science 1991, 251, (4989), 5359.10.1126/science.1846047CrossRefGoogle ScholarPubMed
Browning, N. D.; Buban, J. P.; Chi, M.; Gipson, B.; Herrera, M.; Masiel, D. J.; Mehraeen, S.; Morgan, D. G.; Okamoto, N. L.; Ramasse, Q. M.; Reed, B. W.; Stahlberg, H., The Application of Scanning Transmission Electron Microscopy (STEM) to the Study of Nanoscale Systems. In Modeling Nanoscale Imaging in Electron Microscopy, Vogt, T.; Dahmen, W.; Binev, P., Eds. Springer US: Boston, MA, 2012; pp 1140.10.1007/978-1-4614-2191-7_2CrossRefGoogle Scholar