Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T00:49:10.777Z Has data issue: false hasContentIssue false

Quantifying Real-Time Sample Temperature Under the Gas Environment in the Transmission Electron Microscope Using a Novel MEMS Heater

Published online by Cambridge University Press:  21 May 2021

Meng Li*
Affiliation:
Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA15260, USA
De-Gang Xie
Affiliation:
Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
Xi-Xiang Zhang
Affiliation:
Division of Physical Science and Engineering, King Abdullah University of Science & Technology (KAUST), Thuwal23955-6900, Saudi Arabia
Judith C. Yang
Affiliation:
Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA15260, USA
Zhi-Wei Shan*
Affiliation:
Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
*
*Authors for correspondence: Meng Li, E-mail: [email protected]; Zhi-Wei Shan, E-mail: [email protected]
*Authors for correspondence: Meng Li, E-mail: [email protected]; Zhi-Wei Shan, E-mail: [email protected]
Get access

Abstract

Accurate control and measurement of real-time sample temperature are critical for the understanding and interpretation of the experimental results from in situ heating experiments inside environmental transmission electron microscope (ETEM). However, quantifying the real-time sample temperature remains a challenging task for commercial in situ TEM heating devices, especially under gas conditions. In this work, we developed a home-made micro-electrical-mechanical-system (MEMS) heater with unprecedented small temperature gradient and thermal drift, which not only enables the temperature evolution caused by gas injection to be measured in real-time but also makes the key heat dissipation path easier to model to theoretically understand and predict the temperature decrease. A new parameter termed as “gas cooling ability (H)”, determined purely by the physical properties of the gas, can be used to compare and predict the gas-induced temperature decrease by different gases. Our findings can act as a reference for predicting the real temperature for in situ heating experiments without closed-loop temperature sensing capabilities in the gas environment, as well as all gas-related heating systems.

Type
Software and Instrumentation
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allard, LF, Bigelow, WC, Jose-Yacaman, M, Nackashi, DP, Damiano, J & Mick, SE (2009). A new MEMS-based system for ultra-high-resolution imaging at elevated temperatures. Microsc Res Tech 72(3), 208215.CrossRefGoogle ScholarPubMed
Allard, LF, Overbury, SH, Bigelow, WC, Katz, MB, Nackashi, DP & Damiano, J (2012). Novel MEMS-based gas-cell/heating specimen holder provides advanced imaging capabilities for in situ reaction studies. Microsc Microanal 18(4), 656666.CrossRefGoogle ScholarPubMed
Asoro, MA, Kovar, D & Ferreira, PJ (2013). In situ transmission electron microscopy observations of sublimation in silver nanoparticles. ACS Nano 7(9), 78447852.CrossRefGoogle ScholarPubMed
Baldi, A, Narayan, TC, Koh, AL & Dionne, JA (2014). In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nat Mater 13(12), 11431148.CrossRefGoogle ScholarPubMed
Behrens, M, Studt, F, Kasatkin, I, Kuhl, S, Havecker, M, Abild-Pedersen, F, Zander, S, Girgsdies, F, Kurr, P, Kniep, BL, Tovar, M, Fischer, RW, Norskov, JK & Schlogl, R (2012). The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336(6083), 893897.CrossRefGoogle ScholarPubMed
Bergman, TL, Incropera, FP, DeWitt, DP & Lavine, AS (2011). Fundamentals of Heat and Mass Transfer. United Kingdom: John Wiley & Sons.Google Scholar
Butler, EP (1979). In situ experiments in the transmission electron microscope. Rep Prog Phys 42(5), 833895.CrossRefGoogle Scholar
Chen, JH, Costan, E, van Huis, MA, Xu, Q & Zandbergen, HW (2006). Atomic pillar-based nanoprecipitates strengthen AlMgSi alloys. Science 312(5772), 416419.CrossRefGoogle ScholarPubMed
Chi, H, Curnan, MT, Li, M, Andolina, CM, Saidi, WA, Veser, G & Yang, JC (2020). In situ environmental TEM observation of two-stage shrinking of Cu2O islands on Cu(100) during methanol reduction. Phys Chem Chem Phys 22(5), 27382742.CrossRefGoogle ScholarPubMed
Childs, PRN, Greenwood, JR & Long, CA (2000). Review of temperature measurement. Rev Sci Instrum 71(8), 29592978.CrossRefGoogle Scholar
Curnan, MT, Andolina, CM, Li, M, Zhu, Q, Chi, H, Saidi, WA & Yang, JC (2019). Connecting oxide nucleation and growth to oxygen diffusion energetics on stepped Cu(011) surfaces: An experimental and theoretical study. J Phys Chem C 123(1), 452463.CrossRefGoogle Scholar
Divitini, G, Cacovich, S, Matteocci, F, Cinà, L, Di Carlo, A & Ducati, C (2016). In situ observation of heat-induced degradation of perovskite solar cells. Nat Energy 1, 2.CrossRefGoogle Scholar
Hansen, PL, Wagner, JB, Helveg, S, Rostrup-Nielsen, JR, Clausen, BS & Topsoe, H (2002). Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295(5562), 20532055.CrossRefGoogle ScholarPubMed
Hofmann, S, Sharma, R, Ducati, C, Du, G, Mattevi, C, Cepek, C, Cantoro, M, Pisana, S, Parvez, A, Cervantes-Sodi, F, Ferrari, AC, Dunin-Borkowski, R, Lizzit, S, Petaccia, L, Goldoni, A & Robertson, J (2007). In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett 7(3), 602608.CrossRefGoogle ScholarPubMed
Hudak, BM, Chang, YJ, Yu, L, Li, G, Edwards, DN & Guiton, BS (2014). Real-time observation of the solid-liquid-vapor dissolution of individual tin(IV) oxide nanowires. ACS Nano 8(6), 54415448.CrossRefGoogle ScholarPubMed
Kamino, T, Yaguchi, T, Konno, M, Watabe, A, Marukawa, T, Mima, T, Kuroda, K, Saka, H, Arai, S, Makino, H, Suzuki, Y & Kishita, K (2005 a). Development of a gas injection/specimen heating holder for use with transmission electron microscope. J Electron Microsc 54(6), 497503.CrossRefGoogle ScholarPubMed
Kamino, T, Yaguchi, T, Sato, T & Hashimoto, T (2005 b). Development of a technique for high resolution electron microscopic observation of nano-materials at elevated temperatures. J Electron Microsc 54(6), 505508.CrossRefGoogle ScholarPubMed
Kodambaka, S, Tersoff, J, Reuter, MC & Ross, FM (2007). Germanium nanowire growth below the eutectic temperature. Science 316(5825), 729732.CrossRefGoogle ScholarPubMed
Kreith, F, Manglik, RM & Bohn, MS (2012). Principles of Heat Transfer. United States: Cengage Learning.Google Scholar
Kritzinger, S & Ronander, E (1974). Local beam heating in metallic electron microscope specimens. J Microsc 102(2), 117124.CrossRefGoogle Scholar
Lafferty, JM (2003). Vacuum technology. In Encyclopedia of Physical Science and Technology(Third Edition), Meyers, R. A. (Ed.), pp. 385–410. New York: Academic Press.CrossRefGoogle Scholar
Li, J, Wang, Z, Li, Y & Deepak, FL (2019). In situ atomic-scale observation of kinetic pathways of sublimation in silver nanoparticles. Adv Sci 6, 8.Google ScholarPubMed
Li, M, Curnan, MT, Gresh-Sill, MA, House, SD, Saidi, WA & Yang, JC (2021). Unusual layer-by-layer growth of epitaxial oxide islands during Cu oxidation. Nature Communications 12(1), 2781. doi:10.1038/s41467-021-23043-w.CrossRefGoogle ScholarPubMed
Li, M, Xie, DG, Ma, E, Li, J, Zhang, XX & Shan, ZW (2017). Effect of hydrogen on the integrity of aluminium-oxide interface at elevated temperatures. Nat Commun 8, 14564.CrossRefGoogle ScholarPubMed
Li, M, Xie, D-G & Shan, Z-W (2018). Development of a novel bulk sample TEM heater and its application. Microsc Microanal 24(S1), 18301831.CrossRefGoogle Scholar
Liu, C, Malladi, SK, Xu, Q, Chen, J, Tichelaar, FD, Zhuge, X & Zandbergen, HW (2017). In-situ STEM imaging of growth and phase change of individual CuAlX precipitates in Al alloy. Sci Rep 7(1), 2184.CrossRefGoogle Scholar
Luo, L, Su, M, Yan, P, Zou, L, Schreiber, DK, Baer, DR, Zhu, Z, Zhou, G, Wang, Y, Bruemmer, SM, Xu, Z & Wang, C (2018). Atomic origins of water-vapour-promoted alloy oxidation. Nat Mater 17(6), 514518.CrossRefGoogle ScholarPubMed
Mele, L, Konings, S, Dona, P, Evertz, F, Mitterbauer, C, Faber, P, Schampers, R & Jinschek, JR (2016). A MEMS-based heating holder for the direct imaging of simultaneous in-situ heating and biasing experiments in scanning/transmission electron microscopes. Microsc Res Tech 79(4), 239250.CrossRefGoogle ScholarPubMed
Niekiel, F, Kraschewski, SM, Muller, J, Butz, B & Spiecker, E (2017). Local temperature measurement in TEM by parallel beam electron diffraction. Ultramicroscopy 176, 161169.CrossRefGoogle ScholarPubMed
Panciera, F, Chou, YC, Reuter, MC, Zakharov, D, Stach, EA, Hofmann, S & Ross, FM (2015). Synthesis of nanostructures in nanowires using sequential catalyst reactions. Nat Mater 14(8), 820825.CrossRefGoogle ScholarPubMed
Picher, M, Mazzucco, S, Blankenship, S & Sharma, R (2015). Vibrational and optical spectroscopies integrated with environmental transmission electron microscopy. Ultramicroscopy 150, 1015.CrossRefGoogle ScholarPubMed
Rackauskas, S, Jiang, H, Wagner, JB, Shandakov, SD, Hansen, TW, Kauppinen, EI & Nasibulin, AG (2014). In situ study of noncatalytic metal oxide nanowire growth. Nano Lett 14(10), 58105813.CrossRefGoogle ScholarPubMed
Saka, H, Kamino, T, Ara, S & Sasaki, K (2011). In situ heating transmission electron microscopy. MRS Bull 33(2), 93100.CrossRefGoogle Scholar
Sharma, R & Iqbal, Z (2004). In situ observations of carbon nanotube formation using environmental transmission electron microscopy. Appl Phys Lett 84(6), 990992.CrossRefGoogle Scholar
Simonsen, SB, Chorkendorff, I, Dahl, S, Skoglundh, M, Sehested, J & Helveg, S (2010). Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM. J Am Chem Soc 132(23), 79687975.CrossRefGoogle ScholarPubMed
Springer, GS (1971). Heat transfer in rarefied gases. Adv Heat Transfer 7, 163218.CrossRefGoogle Scholar
Sundén, B & Fu, J (2017 a). Aerodynamic heating. In Heat Transfer in Aerospace Applications, pp. 27–44.CrossRefGoogle Scholar
Sundén, B & Fu, J (2017 b). Low-density heat transfer. In Heat Transfer in Aerospace Applications, pp. 45–70. Elsevier.CrossRefGoogle Scholar
Takeo, K, Toshie, Y, Mitsuru, K, Akira, W & Yasuhira, N (2006). Development of a specimen heating holder with an evaporator and gas injector and its application for catalyst. J Electron Microsc 55(5), 245252.CrossRefGoogle ScholarPubMed
Thornburg, D & Wayman, C (1973). Specimen temperature increases during transmission electron microscopy. Phys Status Solidi (A) 15(2), 449453.CrossRefGoogle Scholar
van Huis, MA, Young, NP, Pandraud, G, Creemer, JF, Vanmaekelbergh, D, Kirkland, AI & Zandbergen, HW (2009). Atomic imaging of phase transitions and morphology transformations in nanocrystals. Adv Mater 21(48), 49924995.CrossRefGoogle ScholarPubMed
van Omme, JT, Zakhozheva, M, Spruit, RG, Sholkina, M & Pérez Garza, HH (2018). Advanced microheater for in situ transmission electron microscopy; enabling unexplored analytical studies and extreme spatial stability. Ultramicroscopy 192, 1420.CrossRefGoogle ScholarPubMed
Vendelbo, SB, Elkjaer, CF, Falsig, H, Puspitasari, I, Dona, P, Mele, L, Morana, B, Nelissen, BJ, van Rijn, R, Creemer, JF, Kooyman, PJ & Helveg, S (2014). Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nat Mater 13(9), 884890.CrossRefGoogle ScholarPubMed
Vendelbo, SB, Kooyman, PJ, Creemer, JF, Morana, B, Mele, L, Dona, P, Nelissen, BJ & Helveg, S (2013). Method for local temperature measurement in a nanoreactor for in situ high-resolution electron microscopy. Ultramicroscopy 133, 7279.CrossRefGoogle Scholar
Vijayan, S & Aindow, M (2019). Temperature calibration of TEM specimen heating holders by isothermal sublimation of silver nanocubes. Ultramicroscopy 196, 142153.CrossRefGoogle ScholarPubMed
Wang, Y, Li, M, Yang, Y, Zhao, Xa, Ma, E & Shan, Z (2020 a). In-situ surface transformation of magnesium to protect against oxidation at elevated temperatures. J Mater Sci Technol 44, 4853.CrossRefGoogle Scholar
Wang, Z, Tang, Y, Zhang, L, Li, M, Shan, Z & Huang, J (2020 b). In situ TEM observations of discharging/charging of solid-state lithium-sulfur batteries at high temperatures. Small 16(28), 18.Google ScholarPubMed
Winterstein, JP, Lin, PA & Sharma, R (2015). Temperature calibration for in situ environmental transmission electron microscopy experiments. Microsc Microanal 21(6), 16221628.CrossRefGoogle ScholarPubMed
Zhou, G, Luo, L, Li, L, Ciston, J, Stach, EA & Yang, JC (2012). Step-edge-induced oxide growth during the oxidation of Cu surfaces. Phys Rev Lett 109(23), 235502.CrossRefGoogle ScholarPubMed
Zou, L, Li, J, Zakharov, D, Stach, EA & Zhou, G (2017). In situ atomic-scale imaging of the metal/oxide interfacial transformation. Nat Commun 8(1), 307.CrossRefGoogle ScholarPubMed
Zou, L, Yang, C, Lei, Y, Zakharov, D, Wiezorek, JMK, Su, D, Yin, Q, Li, J, Liu, Z, Stach, EA, Yang, JC, Qi, L, Wang, G & Zhou, G (2018). Dislocation nucleation facilitated by atomic segregation. Nat Mater 17(1), 5663.CrossRefGoogle ScholarPubMed