Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T10:44:59.308Z Has data issue: false hasContentIssue false

Quantifying Feature Uncertainty in Sub-sampled Low-dose (S)TEM Images

Published online by Cambridge University Press:  04 August 2017

Bryan Stanfill
Affiliation:
National Security Directorate, PNNL, Richland, WA, USA
Sarah Reehl
Affiliation:
National Security Directorate, PNNL, Richland, WA, USA
Maggie Johnson
Affiliation:
Iowa State University, Department of Statistics, AmesUSA
Nigel Browning
Affiliation:
Physical and Computational Science Directorate, PNNL, Richland, WA, USA Materials Science and Engineering, University of Washington, Seattle, WA, USA
Layla Mehdi
Affiliation:
Physical and Computational Science Directorate, PNNL, Richland, WA, USA
Lisa Bramer
Affiliation:
National Security Directorate, PNNL, Richland, WA, USA

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstract
Copyright
© Microscopy Society of America 2017 

References

[1] Kovarik, L., Stevens, A., Liyu, A., et al, Appl Phys Lett 109(16 2016). p. 164102.CrossRefGoogle Scholar
[2] Stevens, A., Yang, H., Carin, L., et al, Microscopy 63(1 2014). pp. 41.CrossRefGoogle Scholar
[3] Beche, A., Goris, B., Freitag, B., et al, Applied Physics Letters 108(9 2016). p. 093103.Google Scholar
[4] Mehdi, B. L., Qian, J., Nasybulin, E., et al, Nano Letters 15(3 2015). pp. 2168.CrossRefGoogle Scholar
[5] Supported by the Chemical Imaging, Signature Discovery, and Analytics in Motion Initiatives at PNNL. PNNL is operated by Battelle Memorial Inst. for the US DOE; contract DE-AC05-76RL01830.Google Scholar