Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T01:56:48.665Z Has data issue: false hasContentIssue false

Quantification of Protodolomite Using a Combination of XRD, EDS, Z-contrast Imaging and Simulation

Published online by Cambridge University Press:  30 July 2020

Yihang Fang
Affiliation:
University of Wisconsin-Madison, Madison, Wisconsin, United States
Huifang Xu
Affiliation:
University of Wisconsin-Madison, Madison, Wisconsin, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Crystallography at the Nanoscale and MicroED with Electrons and X-rays
Copyright
Copyright © Microscopy Society of America 2020

References

Antao, S.M.; Mulder, W.H.; Hassan, I.; Crichton, W.A.; Parise, J.B. Cation disorder in dolomite, CaMg(CO3)2, and its influence on the aragonite + magnesite ↔ dolomite reaction boundary. Am. Mineral. 2004, 89, 11421147.10.2138/am-2004-0728CrossRefGoogle Scholar
Zhang, F.; Xu, H.; Konishi, H.; Roden, E.E. A relationship between d104 value and composition in the calcite-disordered dolomite solid-solution series. Am. Mineral. 2010, 95, 16501656.10.2138/am.2010.3414CrossRefGoogle Scholar
Graf, D.L.; Goldsmith, J.R. Some Hydrothermal Syntheses of Dolomite and Protodolomite. J. Geol. 1956, 64, 173186.10.1086/626332CrossRefGoogle Scholar
Gregg, J.M.; Bish, D.L.; Kaczmarek, S.E.; Machel, H.G. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: A review. Sedimentology 2015, 62, 17491769.10.1111/sed.12202CrossRefGoogle Scholar
Reeder, R.J.; Wenk, H.R. Structure refinements of some thermally disordered dolomites. Am. Mineral. 1983, 68, 769776.Google Scholar
Fang, Y.; Xu, H. A new approach to quantify ordering state of protodolomite using XRD, TEM, and Z-contrast imaging. J. Sediment. Res. 2019, 89, 537551.10.2110/jsr.2019.29CrossRefGoogle Scholar
Kaczmarek, S.E.; Thornton, B.P. The effect of temperature on stoichiometry, cation ordering, and reaction rate in high-temperature dolomitization experiments. Chem. Geol. 2017, 468, 3241.10.1016/j.chemgeo.2017.08.004CrossRefGoogle Scholar
Gregg, J.M.; Bish, D.L.; Kaczmarek, S.E.; Machel, H.G. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: A review. Sedimentology 2015, 62, 17491769.10.1111/sed.12202CrossRefGoogle Scholar
Kaczmarek, S.E.; Gregg, J.M.; Bish, D.; Machel, H.; Fouke, B. Dolomite, very high-magnesium calcite, and microbes—implications for the microbial model of dolomitization, in Characeterization and Modeling of Carbonates - Mountjoy Symposium 1. In SEPM Special Publication; MacNeil, A., Lonnee, J., Wood, R., Eds.; 2017; Vol. 109, p. 17.10.2110/sepmsp.109.01CrossRefGoogle Scholar
Graf, D.L. Crystallographic tables for the rhombohedral carbonates. Am. Mineral. 1961, 46, 12831316.Google Scholar
Gregg, J.M.; Howard, S.A.; Mazzullo, S.J. Early diagenetic recrystallization of Holocene (< 3000 years old) peritidal dolomites, Ambergris Cay, Belize. Sedimentology 1992, 39, 143160.10.1111/j.1365-3091.1992.tb01027.xCrossRefGoogle Scholar