Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T12:37:45.687Z Has data issue: false hasContentIssue false

Quantification of Multicellular Organization, Junction Integrity, and Substrate Features in Collective Cell Migration

Published online by Cambridge University Press:  23 February 2017

Adam C. Canver
Affiliation:
College of Medicine, Drexel University, 245 North 15th Street, Philadelphia, PA 19102, USA Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
Alisa Morss Clyne*
Affiliation:
Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
*
*Corresponding author. [email protected]
Get access

Abstract

Quantitative analysis of multicellular organization, cell–cell junction integrity, and substrate properties is essential to understand the mechanisms underlying collective cell migration. However, spatially and temporally defining these properties is difficult within collectively migrating cell groups due to challenges in accurate cell segmentation within the monolayer. In this paper, we present Matlab®-based algorithms to spatially quantify multicellular organization (migration distance, interface roughness, and cell alignment, area, and morphology), cell–cell junction integrity, and substrate features in confocal microscopy images of two-dimensional collectively migrating endothelial monolayers. We used novel techniques, including measuring the migrating front roughness using a parametric curve formulation, automatically binning cells to obtain data as a function of distance from the migrating front, using iterative morphological closings to fully define cell boundaries, quantifying β-catenin localization as a measure of cell–cell junction integrity, and skeletonizing fibronectin to determine fiber length and orientation. These algorithms are widely accessible, as they use common fluorescent markers and Matlab® functions, and provide high-throughput critical feature quantification within collectively migrating cell groups. These image analysis algorithms can help standardize feature quantification among different experimental techniques, cell types, and research groups studying collective cell migration.

Type
Instrumentation and Software
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arima, S., Nishiyama, K., Ko, T., Arima, Y., Hakozaki, Y., Sugihara, K., Koseki, H., Uchijima, Y., Kurihara, Y. & Kurihara, H. (2011). Angiogenic morphogenesis driven by dynamic and heterogeneous collective endothelial cell movement. Development 138(21), 47634776.CrossRefGoogle ScholarPubMed
Aurenhammer, F. (1991). Voronoi diagrams — a survey of a fundamental geometric data structure. ACM Comput Surv 23(3), 345405.CrossRefGoogle Scholar
Buckmaster, P.S., Ingram, E.A. & Wen, X.L. (2009). Inhibition of the mammalian target of rapamycin signaling pathway suppresses dentate granule cell axon sprouting in a rodent model of temporal lobe epilepsy. J Neurosci 29(25), 82598269.CrossRefGoogle Scholar
Canver, A.C., Ngo, O., Urbano, R.L. & Clyne, A.M. (2016). Endothelial directed collective migration depends on substrate stiffness via localized myosin contractility and cell-matrix interactions. J Biomech 49(8), 13691380.CrossRefGoogle ScholarPubMed
Cardona, A. & Tomancak, P. (2012). Current challenges in open-source bioimage informatics. Nat Methods 9(7), 661665.CrossRefGoogle ScholarPubMed
Dolle, J.P., Rezvan, A., Allen, F.D., Lazarovici, P. & Lelkes, P.I. (2005). Nerve growth factor-induced migration of endothelial cells. J Pharmacol Exp Ther 315(3), 12201227.CrossRefGoogle ScholarPubMed
Duyckaerts, C. & Godefroy, G. (2000). Voronoi tessellation to study the numerical density and the spatial distribution of neurones. J Chem Neuroanat 20(1), 8392.CrossRefGoogle Scholar
Ewald, A.J., Brenot, A., Duong, M., Chan, B.S. & Werb, Z. (2008). Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev Cell 14(4), 570581.CrossRefGoogle ScholarPubMed
Figueroa, D.S., Kemeny, S.F. & Clyne, A.M. (2011). Glycated collagen impairs endothelial cell response to cyclic stretch. Cell Mol Bioeng 4(2), 220230.CrossRefGoogle Scholar
Friedl, P. & Gilmour, D. (2009). Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10(7), 445457.CrossRefGoogle ScholarPubMed
Friedl, P., Locker, J., Sahai, E. & Segall, J.E. (2012). Classifying collective cancer cell invasion. Nat Cell Biol 14(8), 777783.CrossRefGoogle ScholarPubMed
Friedl, P., Wolf, K. & Lammerding, J. (2011). Nuclear mechanics during cell migration. Curr Opin Cell Biol 23(1), 5564.CrossRefGoogle ScholarPubMed
Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., Jeltsch, M., Mitchell, C., Alitalo, K., Shima, D. & Betsholtz, C. (2003). VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6), 11631177.CrossRefGoogle ScholarPubMed
Gottardi, C.J. & Gumbiner, B.M. (2001). Adhesion signaling: How beta-catenin interacts with its partners. Curr Biol 11(19), R792R794.CrossRefGoogle ScholarPubMed
Kemeny, S.F. & Clyne, A.M. (2011). A simplified implementation of edge detection in MATLAB is faster and more sensitive than fast Fourier transform for actin fiber alignment quantification. Microsc Microanal 17(2), 156166.CrossRefGoogle ScholarPubMed
Kemeny, S.F., Figueroa, D.S. & Clyne, A.M. (2013). Hypo- and hyperglycemia impair endothelial cell actin alignment and nitric oxide synthase activation in response to shear stress. PloS One 8(6), e66176.CrossRefGoogle ScholarPubMed
Khalil, A.A. & Friedl, P. (2010). Determinants of leader cells in collective cell migration. Integr Biol (Camb) 2(11–12), 568574.CrossRefGoogle ScholarPubMed
Lacayo, C.I., Pincus, Z., VanDuijn, M.M., Wilson, C.A., Fletcher, D.A., Gertler, F.B., Mogilner, A. & Theriot, J.A. (2007). Emergence of large-scale cell morphology and movement from local actin filament growth dynamics. PLoS Biol 5(9), e233.CrossRefGoogle ScholarPubMed
Meijering, E. (2012). Cell segmentation: 50 years down the road. IEEE Sign Proc Mag 29(5), 140145.CrossRefGoogle Scholar
Merks, R.M.H., Brodsky, S.V., Goligorksy, M.S., Newman, S.A. & Glazier, J.A. (2006). Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev Biol 289(1), 4454.CrossRefGoogle ScholarPubMed
Meziou, L., Histace, Aymeric, Precioso, Frederic, Matuszewski, Bogdan J & Carreiras, Franck. (2012). Fractional entropy based active contour segmentation of cell nuclei in actin-tagged confocal microscopy images. Medical Image Understanding and Analysis, 9-11 July 2011, Swansea, UK.Google Scholar
Michel, R., Steinmeyer, R., Falk, M. & Harms, G.S. (2007). A new detection algorithm for image analysis of single, fluorescence-labeled proteins in living cells. Microsc Res Tech 70(9), 763770.CrossRefGoogle ScholarPubMed
Nath, S.K., Palaniappan, K. & Bunyak, F. (2006). Cell segmentation using coupled level sets and graph-vertex coloring. Med Image Comput Comput Assist Interv 4190, 101108.Google Scholar
Ng, M.R., Besser, A., Danuser, G. & Brugge, J.S. (2012). Substrate stiffness regulates cadherin-dependent collective migration through myosin-II contractility. J Cell Biol 199(3), 545563.CrossRefGoogle ScholarPubMed
Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1), 6266.CrossRefGoogle Scholar
Pelham, R.J. Jr. & Wang, Y. (1997). Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA 94(25), 1366113665.CrossRefGoogle ScholarPubMed
Poujade, M., Grasland-Mongrain, E., Hertzog, A., Jouanneau, J., Chavrier, P., Ladoux, B., Buguin, A. & Silberzan, P. (2007). Collective migration of an epithelial monolayer in response to a model wound. Proc Natl Acad Sci USA 104(41), 1598815993.CrossRefGoogle ScholarPubMed
Puliafito, A., Hufnagel, L., Neveu, P., Streichan, S., Sigal, A., Fygenson, D.K. & Shraiman, B.I. (2012). Collective and single cell behavior in epithelial contact inhibition. Proc Natl Acad Sci USA 109(3), 739744.CrossRefGoogle ScholarPubMed
Rezakhaniha, R., Agianniotis, A., Schrauwen, J.T.C., Griffa, A., Sage, D., Bouten, C.V.C., van de Vosse, F.N., Unser, M. & Stergiopulos, N. (2012). Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech Model Mechanobiol 11(3–4), 461473.CrossRefGoogle ScholarPubMed
Serra-Picamal, X., Conte, V., Vincent, R., Anon, E., Tambe, D.T., Bazellieres, E., Butler, J.P., Fredberg, J.J. & Trepat, X. (2012). Mechanical waves during tissue expansion. Nat Phys 8(8), 628634.CrossRefGoogle Scholar
Styles, I., Flight, R, Landini, G, Shelton, R, Milward, M & Cooper, P. (2015). Automated optimisation of cell segmentation parameters in phase contrast using discrete mereotopology. In Proceedings of Medical Image Understanding and Analysis, 15-17 July 2015, Lincoln, UK, 126-131.Google Scholar
Theveneau, E., Marchant, L., Kuriyama, S., Gull, M., Moepps, B., Parsons, M. & Mayor, R. (2010). Collective chemotaxis requires contact-dependent cell polarity. Dev Cell 19(1), 3953.CrossRefGoogle ScholarPubMed
Trepat, X., Wasserman, M.R., Angelini, T.E., Millet, E., Weitz, D.A., Butler, J.P. & Fredberg, J.J. (2009). Physical forces during collective cell migration. Nat Phys 5(6), 426430.CrossRefGoogle Scholar
Tse, J.R. & Engler, A.J. (2010). Preparation of hydrogel substrates with tunable mechanical properties. Curr Protoc Cell Biol. 47(10.16), 10.16.110.16.16.CrossRefGoogle Scholar
Versaevel, M., Grevesse, T. & Gabriele, S. (2012). Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nat Commun 3, 671.CrossRefGoogle ScholarPubMed
Vitorino, P., Hammer, M., Kim, J. & Meyer, T. (2011). A steering model of endothelial sheet migration recapitulates monolayer integrity and directed collective migration. Mol Cell Biol 31(2), 342350.CrossRefGoogle ScholarPubMed
Wolf, K., Wu, Y.I., Liu, Y., Geiger, J., Tam, E., Overall, C., Stack, M.S. & Friedl, P. (2007). Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 9(8), 893904.CrossRefGoogle ScholarPubMed
Supplementary material: File

Canver and Clyne supplementary material

Canver and Clyne supplementary material 1

Download Canver and Clyne supplementary material(File)
File 74.8 KB