Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:54:38.402Z Has data issue: false hasContentIssue false

Quantification Challenges for Atom Probe Tomography of Hydrogen and Deuterium in Zircaloy-4

Published online by Cambridge University Press:  11 March 2019

Isabelle Mouton*
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Andrew J. Breen
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Siyang Wang
Affiliation:
Department of Materials, Royal School of Mines, Imperial College London, London, SW7 2AZ, UK
Yanhong Chang
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Agnieszka Szczepaniak
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Paraskevas Kontis
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Leigh T. Stephenson
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Dierk Raabe
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
M. Herbig
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
T. Ben Britton
Affiliation:
Department of Materials, Royal School of Mines, Imperial College London, London, SW7 2AZ, UK
Baptiste Gault*
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
*
*Authors for correspondence: Isabelle Mouton, E-mail: [email protected]; Baptiste Gault, E-mail: [email protected]
*Authors for correspondence: Isabelle Mouton, E-mail: [email protected]; Baptiste Gault, E-mail: [email protected]
Get access

Abstract

Analysis and understanding of the role of hydrogen in metals is a significant challenge for the future of materials science, and this is a clear objective of recent work in the atom probe tomography (APT) community. Isotopic marking by deuteration has often been proposed as the preferred route to enable quantification of hydrogen by APT. Zircaloy-4 was charged electrochemically with hydrogen and deuterium under the same conditions to form large hydrides and deuterides. Our results from a Zr hydride and a Zr deuteride highlight the challenges associated with accurate quantification of hydrogen and deuterium, in particular associated with the overlap of peaks at a low mass-to-charge ratio and of hydrogen/deuterium containing molecular ions. We discuss possible ways to ensure that appropriate information is extracted from APT analysis of hydrogen in zirconium alloy systems that are important for nuclear power applications.

Type
Materials Science: Metals
Copyright
Copyright © Microscopy Society of America 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ai, CF & Tsong, TT (1984). A study of the temperature dependence of a surface catalyzed and field enhanced formation of H3 and NH3 on metal surfaces. J Chem Phys 81, 28452854.Google Scholar
Bair, J, Asle Zaeem, M & Tonks, M (2015). A review on hydride precipitation in zirconium alloys. J Nucl Mater 466, 1220.Google Scholar
Birch, R, Wang, S, Tong, V & Britton, TB (2018). The effect of cooling rate and grain size on hydride formation in Zircaloy-4. arXiv:1807.11927 [cond-mat]. Available at http://arxiv.org/abs/1807.11927 (retrieved October 10, 2018).Google Scholar
Breen, AJ, Mouton, I, Lu, W, Wang, S, Szczepaniak, A, Kontis, P, Stephenson, LT, Chang, Y, da Silva, AK, Liebscher, CH, Raabe, D, Britton, TB, Herbig, M & Gault, B (2018). Atomic scale analysis of grain boundary deuteride growth front in Zircaloy-4. Scr Mater 156, 4246.Google Scholar
Chang, Y, Breen, AJ, Tarzimoghadam, Z, Kürnsteiner, P, Gardner, H, Ackerman, A, Radecka, A, Bagot, PAJ, Lu, W, Li, T, Jägle, EA, Herbig, M, Stephenson, LT, Moody, MP, Rugg, D, Dye, D, Ponge, D, Raabe, D & Gault, B (2018). Characterizing solute hydrogen and hydrides in pure and alloyed titanium at the atomic scale. Acta Mater 150, 273280.Google Scholar
Chen, Y-S, Haley, D, Gerstl, SSA, London, AJ, Sweeney, F, Wepf, RA, Rainforth, WM, Bagot, PAJ & Moody, MP (2017). Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel. Science 355, 11961199.Google Scholar
Chi-fong, A & Tsong, TT (1984). Field promoted and surface catalyzed formation of H3 and NH3 on transition metal surfaces: A pulsed-laser imaging atom-probe study. Surf Sci 138, 339360.Google Scholar
Christensen, M, Wolf, W, Freeman, C, Wimmer, E, Adamson, RB, Hallstadius, L, Cantonwine, PE & Mader, EV (2015). H in α -Zr and in zirconium hydrides: Solubility, effect on dimensional changes, and the role of defects. J Phys: Condens Matter 27, 025402.Google Scholar
Devaraj, A, Perea, DE, Liu, J, Gordon, LM, Prosa, TJ, Parikh, P, Diercks, DR, Meher, S, Kolli, RP, Meng, YS & Thevuthasan, S (2018). Three-dimensional nanoscale characterisation of materials by atom probe tomography. Int Mater Rev 63, 68101.Google Scholar
Gault, B, La Fontaine, A, Moody, MPMP, Ringer, SPSP & Marquis, EAEA (2010). Impact of laser pulsing on the reconstruction in an atom probe tomography. Ultramicroscopy 110, 12151222.Google Scholar
Gault, B, Saxey, DW, Ashton, MW, Sinnott, SB, Chiaramonti, AN, Moody, MP & Schreiber, DK (2016). Behavior of molecules and molecular ions near a field emitter. This work is a partial contribution of the US Government and therefore is not subject to copyright in the United States. New J Phys 18, 33031.Google Scholar
Gemma, R, Al-Kassab, T, Kirchheim, R & Pundt, A (2007). Studies on hydrogen loaded V–Fe8 at% films on Al2O3 substrate. J Alloys Compd 446–447, 534538.Google Scholar
Gemma, R, Al-Kassab, T, Kirchheim, R & Pundt, A (2011). Analysis of deuterium in V–Fe5 at.% film by atom probe tomography (APT). J Alloys Compd 509, S872S876.Google Scholar
Giroldi, JP, Vizcaíno, P, Flores, AV & Banchik, AD (2009). Hydrogen terminal solid solubility determinations in Zr–2.5Nb pressure tube microstructure in an extended concentration range. J Alloys Compd 474, 140146.Google Scholar
Grosse, M, Steinbrueck, M, Lehmann, E & Vontobel, P (2008). Kinetics of hydrogen absorption and release in zirconium alloys during steam oxidation. Oxid Met 70, 149162.Google Scholar
Kellogg, GL (1981). Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe. J Appl Phys 52, 5320.Google Scholar
Kelly, TF & Miller, MK (2007). Invited review article: Atom probe tomography. Rev Sci Instrum 78, 031101.Google Scholar
Kestel, BJ (1986). Non-acid electrolyte thins many materials for TEM without causing hydride formation. Ultramicroscopy 19, 205211.Google Scholar
Kingham, DR (1982). The post-ionization of field evaporated ions: A theoretical explanation of multiple charge states. Surf Sci 116, 273301.Google Scholar
Kitaguchi, HS, Lozano-Perez, S & Moody, MP (2014). Quantitative analysis of carbon in cementite using pulsed laser atom probe. Ultramicroscopy 147, 5160.Google Scholar
Li, S, Wang, Y, Che, Z, Liu, G, Ren, Y & Wang, Y (2017). Investigations of deformation-induced δ→ζ phase transformation in zirconium hydride by in situ high-energy X-ray diffraction. Acta Mater 140, 168175.Google Scholar
Li, T, Kasian, O, Cherevko, S, Zhang, S, Geiger, S, Scheu, C, Felfer, P, Raabe, D, Gault, B & Mayrhofer, KJJ (2018). Atomic-scale insights into surface species of electrocatalysts in three dimensions. Nat Catal 1, 300305.Google Scholar
London, AJ, Haley, D & Moody, MP (2017). Single-ion deconvolution of mass peak overlaps for atom probe microscopy. Microsc Microanal 23, 300306.Google Scholar
Mancini, L, Amirifar, N, Shinde, D, Blum, I, Gilbert, M, Vella, A, Vurpillot, F, Lefebvre, W, Lardé, R, Talbot, E, Pareige, P, Portier, X, Ziani, A, Davesnne, C, Durand, C, Eymery, J, Butté, R, Carlin, J-F, Grandjean, N & Rigutti, L (2014). Composition of wide bandgap semiconductor materials and nanostructures measured by atom probe tomography and its dependence on the surface electric field. J Phys Chem C 118, 2413624151.Google Scholar
Marquis, EAEA & Gault, B (2008). Determination of the tip temperature in laser assisted atom-probe tomography using charge state distributions. J Appl Phys 104, 084914.Google Scholar
McMinn, A, Darby, EC & Schofield, JS (2000). Terminal solid solubility of hydrogen in zirconium alloys. In Proc 12th Int Symp on Zirconium in the Nuclear Industry ASTM STP 1354, Sabol, GB & Moan, GD (Eds.), West Conshohocken, USA: ASTM, 173194.Google Scholar
Miller, MK (1981). An atom probe study of the anomalous field evaporation of alloys containing silicon. J Vac Sci Technol 19, 57.Google Scholar
Miller, MK (2000). Atom Probe Tomography: Analysis at the New, Atomic Level. York: Kluwer Academic/Plenum Publishers.Google Scholar
Müller, EW, Panitz, JA, McLane, SB & Müller, EW (1968). Atom-probe field ion microscope. Rev Sci Instrum 39, 8386.Google Scholar
Müller, M, Saxey, DWW, Smith, GDWDW & Gault, B (2011). Some aspects of the field evaporation behaviour of GaSb. Ultramicroscopy 111, 487492.Google Scholar
Orloff, J (2008). Handbook of Charged Particle Optics, 2nd ed. Boca Raton, USA: CRC Press.Google Scholar
Sha, W, Chang, L, Smith, GDWDW, Mittemeijer, EJJ, Liu, C & Mittemeijer, EJJ (1992). Some aspects of atom-probe analysis of Fe-c and Fe-n systems. Surf Sci 266, 416423.Google Scholar
Shariq, A, Mutas, S, Wedderhoff, K, Klein, C, Hortenbach, H, Teichert, S, Kücher, P & Gerstl, SSA (2009). Investigations of field-evaporated end forms in voltage- and laser-pulsed atom probe tomography. Ultramicroscopy 109, 472479.Google Scholar
Shen, HH, Zu, XT, Chen, B, Huang, CQ & Sun, K (2016). Direct observation of hydrogenation and dehydrogenation of a zirconium alloy. J Alloys Compd 659, 2330.Google Scholar
Suman, S, Khan, MK, Pathak, M, Singh, RN & Chakravartty, JK (2015). Hydrogen in Zircaloy: Mechanism and its impacts. Int J Hydrogen Energy 40, 59765994.Google Scholar
Sundell, G, Thuvander, M & Andrén, H-O (2013). Hydrogen analysis in APT: Methods to control adsorption and dissociation of H2. Ultramicroscopy 132, 285289.Google Scholar
Takahashi, J, Kawakami, K & Kobayashi, Y (2018). Origin of hydrogen trapping site in vanadium carbide precipitation strengthening steel. Acta Mater 153, 193204.Google Scholar
Takahashi, J, Kawakami, K, Kobayashi, Y & Tarui, T (2010). The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography. Scr Mater 63, 261264.Google Scholar
Takahashi, J, Kawakami, K, Otsuka, H & Fujii, H (2009). Atom probe analysis of titanium hydride precipitates. Ultramicroscopy 109, 568573.Google Scholar
Thompson, K, Lawrence, D, Larson, DJ, Olson, JD, Kelly, TF & Gorman, B (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.Google Scholar
Tong, VS & Britton, TB (2017). Formation of very large ‘blocky alpha’ grains in Zircaloy-4. Acta Mater 129, 510520.Google Scholar
Tsong, TT, Kinkus, TJ & Ai, CF (1983). Field induced and surface catalyzed formation of novel ions: A pulsed-laser time-of-flight atom-probe study. J Chem Phys 78, 47634775.Google Scholar
Vurpillot, F, Houard, J, Vella, A & Deconihout, B (2009). Thermal response of a field emitter subjected to ultra-fast laser illumination. J Phys D: Appl Phys 42, 125502.Google Scholar
Yamanaka, S, Higuchi, K & Miyake, M (1995). Hydrogen solubility in zirconium alloys. J Alloys Compd 231, 503507.Google Scholar
Yao, L, Cairney, JM, Zhu, C & Ringer, SP (2011). Optimisation of specimen temperature and pulse fraction in atom probe microscopy experiments on a microalloyed steel. Ultramicroscopy 111, 648651.Google Scholar