Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-15T13:26:13.502Z Has data issue: false hasContentIssue false

Probing and Analyzing Buried Interfaces of Multifunctional Oxides Using a Secondary Electron Energy Analyzer

Published online by Cambridge University Press:  17 July 2014

Avinash Srinivasan*
Affiliation:
Department of Electrical and Computer Engineering, Centre for Integrated Circuit Failure Analysis and Reliability (CICFAR), National University of Singapore, Singapore 117581
Anjam Khursheed
Affiliation:
Department of Electrical and Computer Engineering, Centre for Integrated Circuit Failure Analysis and Reliability (CICFAR), National University of Singapore, Singapore 117581
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

A contactless method of probing and analyzing multifunctional oxide interfaces using an electron energy analyzer inside a scanning electron microscope is presented. High contrast experimental secondary electron analyzer signals are used to detect changes in the interface conductivity of a LaAlO3/SrTiO3 sample. Monte Carlo simulations of the primary beam/specimen interaction are carried out and correlated with the experimental results in order to help understand the role of the primary beam energy and adjust it to enhance contrast.

Type
Materials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bogorin, D.F., Irvin, P., Cen, C. & Levy, J. (2010). LaAlO3/SrTiO3-based device concepts. arXiv preprint arXiv 1011, 5290.Google Scholar
Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V. & Gauvin, R. (2007). CASINO V2. 42—A Fast and Easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29(3), 92101.CrossRefGoogle Scholar
Gostev, A.V., Orlikovskii, N.A., Rau, E.I. & Trubitsyn, A.A. (2013). Updating of the toroidal electron spectrometer intended for a scanning electron microscope and its new applications in diagnostics of micro-and nanoelectronic structures. Tech Phys 58(3), 447454.CrossRefGoogle Scholar
Hoang, H.Q., Osterberg, M. & Khursheed, A. (2011). A high signal-to-noise ratio toroidal electron spectrometer for the SEM. Ultramicroscopy 111(8), 10931100.CrossRefGoogle ScholarPubMed
Kalabukhov, A., Gunnarsson, R., Börjesson, J., Olsson, E., Claeson, T. & Winkler, D. (2007). Effect of oxygen vacancies in the SrTiO3 substrate on the electrical properties of the LaAlO3/SrTiO3 interface. Phys Rev B 75(12), 121404.CrossRefGoogle Scholar
Kazemian, P., Mentink, S.A.M., Rodenburg, C. & Humphreys, C.J. (2006). High resolution quantitative two-dimensional dopant mapping using energy-filtered secondary electron imaging. J Appl Phys 100(5), 054901.CrossRefGoogle Scholar
Khursheed, A. & Hoang, H.Q. (2008). A second-order focusing electrostatic toroidal electron spectrometer with 2π radian collection. Ultramicroscopy 109(1), 104110.CrossRefGoogle ScholarPubMed
Mathew, S., Annadi, A., Chan, T.K., Sasmara, T.C., Zhan, D., Wang, X.R., Azimi, S., Shen, Z., Rusydi, A., Breese, M.B.H. & Venkatesan, T. (2013). Tuning the interface conductivity of LaAlO3/SrTiO3 using ion beams: Implications for patterning. ACS Nano 7(12), 1057210581.CrossRefGoogle ScholarPubMed
Mizuhara, Y., Kato, J., Nagatomi, T., Takai, Y. & Inoue, M. (2002). Quantitative measurement of surface potential and amount of charging on insulator surface under electron beam irradiation. J Appl Phys 92(10), 61286133.CrossRefGoogle Scholar
Ohtomo, A. & Hwang, H.Y. (2004). A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427(6973), 423426.CrossRefGoogle ScholarPubMed
Program Casino. Monte Carlo simulation of electron trajectory in solids, v2.48. Available at http://www.gel.usherbrooke.ca/casino/index.htmlGoogle Scholar
Schoofs, F., Carpenter, M.A., Vickers, M.E., Egilmez, M., Fix, T., Kleibeuker, J.E., MacManus-Driscoll, J.E. & Blamire, M.J. (2013). Carrier density modulation by structural distortions at modified LaAlO3/SrTiO3 interfaces. J Phys Condens Matter 25(17), 175005.CrossRefGoogle ScholarPubMed
Siemons, W., Koster, G., Yamamoto, H., Harrison, W.A., Lucovsky, G., Geballe, T.H., Blank, D.H.A. & Beasley, M.R. (2007). Origin of charge density at LaAlO3 on SrTiO3 heterointerfaces: Possibility of intrinsic doping. Phys Rev Lett 98(19), 196802.CrossRefGoogle ScholarPubMed
Thong, J.T. (1993). Electron Beam Testing Technology: Plenum Publishing Corporation.CrossRefGoogle Scholar