Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T14:11:41.905Z Has data issue: false hasContentIssue false

Preparation and Loading Process of Single Crystalline Samples into a Gas Environmental Cell Holder for In Situ Atomic Resolution Scanning Transmission Electron Microscopic Observation

Published online by Cambridge University Press:  30 March 2016

Rainer Straubinger*
Affiliation:
Faculty of Physics & Materials Science Center (WZMW), Philipps-Universität Marburg, 35032 Marburg, Germany
Andreas Beyer
Affiliation:
Faculty of Physics & Materials Science Center (WZMW), Philipps-Universität Marburg, 35032 Marburg, Germany
Kerstin Volz
Affiliation:
Faculty of Physics & Materials Science Center (WZMW), Philipps-Universität Marburg, 35032 Marburg, Germany
*
*Corresponding author. [email protected]
Get access

Abstract

A reproducible way to transfer a single crystalline sample into a gas environmental cell holder for in situ transmission electron microscopic (TEM) analysis is shown in this study. As in situ holders have only single-tilt capability, it is necessary to prepare the sample precisely along a specific zone axis. This can be achieved by a very accurate focused ion beam lift-out preparation. We show a step-by-step procedure to prepare the sample and transfer it into the gas environmental cell. The sample material is a GaP/Ga(NAsP)/GaP multi-quantum well structure on Si. Scanning TEM observations prove that it is possible to achieve atomic resolution at very high temperatures in a nitrogen environment of 100,000 Pa.

Type
Technique and Instrumentation Development
Copyright
Copyright © Microscopy Society of America 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, G.B. Jr., Johnston, H.L. & Kerr, E.C. (1952). The heat capacity of gallium up from 15 to 320 K. The heat of fusion at the melting point. J Am Chem Soc 74, 4784.Google Scholar
Allard, L.F., Overbury, S.H., Bigelow, W.C., Katz, M.B., Nackashi, D.P. & Damiano, J. (2012). Novel MEMS-based gas-cell/heating specimen holder provides advanced imaging capabilities for in situ reaction studies. Microsc Microanal 18, 656666.Google Scholar
Birajdar, B.I., Antesberger, T., Butz, B., Stutzmann, M. & Spiecker, E. (2012). Direct in situ transmission electron microscopy observation of Al push up during early stages of the Al-induced layer exchange. Scr Mater 66, 550553.Google Scholar
Boyes, E.D. & Gai, P.L. (1997). Environmental high resolution electron microscopy and applications to chemical science. Ultramicroscopy 67, 219232.Google Scholar
Creemer, J.F., Helveg, S., Hoveling, G.H., Ullmann, S., Molenbroek, A.M., Sarro, P.M. & Zandbergen, H.W. (2008). Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 108, 993998.Google Scholar
Giannuzzi, L.A. & Stevie, F.A. (1999). A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30, 197204.Google Scholar
Gies, S., Zimprich, M., Wegele, T., Kruska, C., Beyer, A., Stolz, W., Volz, K. & Heimbrodt, W. (2014). Annealing effects on the composition and disorder of Ga(N,As,P) quantum wells on silicon substrates for laser application. J Cryst Growth 402, 169174.Google Scholar
Hillerich, K., Dick, K.A., Wen, C.Y., Reuter, M.C., Kodambaka, S. & Ross, F.M. (2013). Strategies to control morphology in hybrid group III-V/group IV heterostructure nanowires. Nano Lett 13, 903908.Google Scholar
Hofer, F., Grogger, W., Kothleitner, G. & Warbichler, P. (1997). Quantitative analysis of EFTEM elemental distribution images. Ultramicroscopy 67, 83103.Google Scholar
Hugo, R.C., Kung, H., Weertman, J.R., Mitra, R., Knapp, J.A. & Follstaedt, D.M. (2003). In-situ TEM tensile testing of DC magnetron sputtered and pulsed laser deposited Ni thin films. Acta Mater 51, 19371943.Google Scholar
Imrich, P.J., Kirchlechner, C., Kiener, D. & Dehm, G. (2015). Internal and external stresses: In situ TEM compression of Cu bicrystals containing a twin boundary. Scr Mater 100, 9497.Google Scholar
Kallesøe, C., Wen, C.Y., Booth, T.J., Hansen, O., Bøggild, P., Ross, F.M. & Mølhave, K. (2012). In situ TEM creation and electrical characterization of nanowire devices. Nano Lett 12, 29652970.Google Scholar
Katz, M.B., Duan, Y., Graham, G.W., Pan, X. & Allard, L.F. (2012). In situ observation of the evolution of Pt particles in a perovskite-based catalyst during redox cycling at high temperature and atmospheric pressure with atomic resolution. Microsc Microanal 18, 11201121.Google Scholar
Kishita, K., Sakai, H., Tanaka, H., Saka, H., Kuroda, K., Sakamoto, M., Watabe, A. & Kamino, T. (2009). Development of an analytical environmental TEM system and its application. J Electron Microsc 58, 331339.Google Scholar
Legros, M., Gianola, D.S. & Hemker, K.J. (2008). In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater 56, 33803393.Google Scholar
Liebich, S., Zimprich, M., Beyer, A., Lange, C., Franzbach, D.J., Chatterjee, S., Hossain, N., Sweeney, S.J., Volz, K., Kunert, B. & Stolz, W. (2011). Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate. Appl Phys Lett 99, 071109.Google Scholar
Morrow, B.M., McCabe, R.J., Cerreta, E.K. & Tomé, C.N. (2014). In-situ TEM observation of twinning and detwinning during cyclic loading in Mg. Metall Mater Trans A Phys Metall Mater Sci 45, 3640.Google Scholar
Nielsen, M.H., Aloni, S. & De Yoreo, J.J. (2013). In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 218, 213218.Google Scholar
Schaffer, B., Grogger, W. & Kothleitner, G. (2004). Automated spatial drift correction for EFTEM image series. Ultramicroscopy 102, 2736.Google Scholar
Schaffer, M., Schaffer, B. & Ramasse, Q. (2012). Sample preparation for atomic-resolution STEM at low voltages by FIB. Ultramicroscopy 114, 6271.Google Scholar
Suzuki, S., Bower, C. & Zhou, O. (1998). In-situ TEM and EELS studies of alkali–metal intercalation with single-walled carbon nanotubes. Chem Phys Lett 285, 230234.Google Scholar
Volz, K., Beyer, A., Witte, W., Ohlmann, J., Nmeth, I., Kunert, B. & Stolz, W. (2011). GaP-nucleation on exact Si (0 0 1) substrates for III/V device integration. J Cryst Growth 315, 3747.Google Scholar
Werner, K., Beyer, A., Oelerich, J.O., Baranovskii, S.D., Stolz, W. & Volz, K. (2014). Structural characteristics of gallium metal deposited on Si (001) by MOCVD. J Cryst Growth 405, 102109.Google Scholar
Yaguchi, T., Suzuki, M., Watabe, A., Nagakubo, Y., Ueda, K. & Kamino, T. (2011). Development of a high temperature-atmospheric pressure environmental cell for high-resolution TEM. J Electron Microsc 60, 217225.Google Scholar
Zhang, S., Chen, C., Cargnello, M., Fornasiero, P., Gorte, R.J., Graham, G.W. & Pan, X. (2015). Dynamic structural evolution of supported palladium–ceria core–shell catalysts revealed by in situ electron microscopy. Nat Commun 6, 7778.Google Scholar