Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T04:46:51.430Z Has data issue: false hasContentIssue false

Prediction of ELNES and Quantification of Structural Properties Using Artificial Neural Network

Published online by Cambridge University Press:  30 July 2020

Shin Kiyohara
Affiliation:
Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
Masashi Tsubaki
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo, Japan
Teruyasu Mizoguchi
Affiliation:
The University of Tokyo, Meguro-ku, Tokyo, Japan

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Advances in Modeling, Simulation, and Artificial Intelligence in Microscopy and Microanalysis for Physical and Biological Systems
Copyright
Copyright © Microscopy Society of America 2020

References

Paruzzo, F. et al. , Nature Communications, 9 (2018), p. 4501.10.1038/s41467-018-06972-xCrossRefGoogle Scholar
Oviedo, F. et al. , npj Computational Materials, 5 (2019), p. 60.10.1038/s41524-019-0196-xCrossRefGoogle Scholar
Kiyohara, S. et al. , submitted.Google Scholar
Kiyohara, S. et al. , J. Phys. Mater., 2 (2019), p. 024003.10.1088/2515-7639/ab0b68CrossRefGoogle Scholar
Mizoguchi, T. and Kiyohara, S., Microscopy, (2020), p. 1.Google Scholar
Kiyohara, S. and Mizoguchi, T., in preparation.Google Scholar
Jain, A. et al. , APL Materials, 1 (2013), p. 011002.10.1063/1.4812323CrossRefGoogle Scholar
The authors acknowledge funding from JST-PRESTO (JPM-JPR16NB 16814592), MEXT, under grantnos. 18J11573, 17H06094, 19H00818 and 19H05787 as well as the special fund of the Institute of Industrial Science, University of Tokyo (Tenkai5504850104)Google Scholar