Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-02T20:04:32.926Z Has data issue: false hasContentIssue false

The Potential of Materials Analysis by Electron Rutherford Backscattering as Illustrated by a Case Study of Mouse Bones and Related Compounds

Published online by Cambridge University Press:  03 May 2013

Maarten Vos*
Affiliation:
Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200, Australia
Károly Tökési
Affiliation:
Institute of Nuclear Research, Hungarian Academy of Sciences (ATOMKI), P.O. Box 51, H-4001 Debrecen, Hungary
Ilona Benkö
Affiliation:
Department of Pharmacology and Pharmacotherapy, Medical and Health Science Center, University of Debrecen, P.O. Box 12, 4032 Debrecen, Hungary
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

Electron Rutherford backscattering (ERBS) is a new technique that could be developed into a tool for materials analysis. Here we try to establish a methodology for the use of ERBS for materials analysis of more complex samples using bone minerals as a test case. For this purpose, we also studied several reference samples containing Ca: calcium carbonate (CaCO3) and hydroxyapatite and mouse bone powder. A very good understanding of the spectra of CaCO3 and hydroxyapatite was obtained. Quantitative interpretation of the bone spectrum is more challenging. A good fit of these spectra is only obtained with the same peak widths as used for the hydroxyapatite sample, if one allows for the presence of impurity atoms with a mass close to that of Na and Mg. Our conclusion is that a meaningful interpretation of spectra of more complex samples in terms of composition is indeed possible, but only if widths of the peaks contributing to the spectra are known. Knowledge of the peak widths can either be developed by the study of reference samples (as was done here) or potentially be derived from theory.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amarie, S., Zaslansky, P., Kajihara, Y., Griesshaber, E., Schmahl, W.W. & Keilmann, F. (2012). Nano-FTIR chemical mapping of minerals in biological materials. Beilstein J Nanotechnol 3, 312323.CrossRefGoogle ScholarPubMed
Andrews, J.C., Almeida, E., Van Der Meulen, M.C., Alwood, J.S., Lee, C., Liu, Y., Chen, J., Meirer, F., Feser, M., Gelb, J., Rudati, J., Tkachuk, A., Yun, W. & Pianetta, P. (2010). Nanoscale X-ray microscopic imaging of mammalian mineralized tissue. Microsc Microanal 16, 327336.CrossRefGoogle ScholarPubMed
Benhamou, C. (2007). Effects of osteoporosis medications on bone quality. Joint Bone Spine 74, 3947.CrossRefGoogle ScholarPubMed
Benkö, I., Rajta, I., Csik, A., Tóth, J., Benkö, K., Géresi, K., Ungvári, E., Szabó, B., Sarkadi, G., Paripás, B., Takács, I. & Tökési, K. (2012). Major and trace elements in mouse bone measured by surface and bulk sensitive methods. Nucl Instrum and Meth B 279, 223226.CrossRefGoogle Scholar
Bloebaum, R.D., Holmes, J.L. & Skedros, J.G. (2005). Mineral content changes in bone associated with damage induced by the electron beam. Scanning 27, 240248.CrossRefGoogle ScholarPubMed
Bloebaum, R., Skedros, J., Vajda, E., Bachus, K. & Constantz, B. (1997). Determining mineral content variations in bone using backscattered electron imaging. Bone 20, 485490.CrossRefGoogle ScholarPubMed
Boivin, G. & Meunier, P. (2003). The mineralization of bone tissue: A forgotten dimension in osteoporosis research. Osteopor Int 4(Suppl 3), S19S24.CrossRefGoogle Scholar
Boskey, A., Gadaleta, S., Gundberg, C., Doty, S., Ducy, P. & Karsenty, G. (1998). Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23, 187196.CrossRefGoogle ScholarPubMed
Davis, G.R. & Wong, F.S.L. (1996). X-ray microtomography of bones and teeth. Physiol Meas 17, 121146.CrossRefGoogle ScholarPubMed
Fei, Y., Zhang, M., Li, M., Huang, Y., He, W., Ding, W. & Yang, J. (2007). Element analysis in femur of diabetic osteoporosis model by SRXRF microprobe. Micron 38, 637642.CrossRefGoogle ScholarPubMed
Guggenbuhl, P., Filmon, R., Mabilleau, G., Baslé, M. & Chappard, D. (2008). Iron inhibits hydroxyapatite crystal growth in vitro. Metabolism 57, 903910.CrossRefGoogle ScholarPubMed
Kaabar, W., Gundogdu, O., Laklouk, A., Bunk, O., Pfeiffer, F., Farquharson, M. & Bradley, D. (2010). Micro-PIXE and SAXS studies at the bone-cartilage interface. Appl Radiat Isot 68, 730734.CrossRefGoogle ScholarPubMed
Kourkoumelis, N., Balatsoukas, I. & Tzaphlidou, M. (2012). Ca/P concentration ratio at different sites of normal and osteoporotic rabbit bones evaluated by Auger and energy dispersive X-ray spectroscopy. J Biol Phys 38, 279291.CrossRefGoogle ScholarPubMed
Lakatos, P. & Takács, I. (2012). Metabolic Bone Disorders. Budapest, Hungary: Semmelweis Press.Google Scholar
Manolagos, S. & Parfitt, A. (2010). What old means to bone. Trends Endocrinol Metab 21, 369374.CrossRefGoogle Scholar
Nielsen, F. (2010). Magnesium inflammation, and obesity in chronic disease. Nutr Rev 68, 333340.CrossRefGoogle ScholarPubMed
Rude, R., Gruber, H., Norton, H., Wei, L., Frausto, A. & Mills, B. (2004). Bone loss induced by dietary magnesium reduction to 10% of the nutrient requirement in rats is associated with increased release of substance p and tumor necrosis factor-alpha. J Nutr 134, 7985.CrossRefGoogle ScholarPubMed
Rude, R., Singer, F. & Gruber, H. (2009). Skeletal and hormonal effects of magnesium deficiency. J Am Coll Nutr 28, 131141.CrossRefGoogle ScholarPubMed
Saiki, M., Takata, M., Kramarski, S. & Borelli, A. (1999). Instrumental neutron activation analysis of rib bone samples and bone reference materials. Biol Trace Elem Res 7172, 4146.CrossRefGoogle ScholarPubMed
Salome, M., Peyrin, F., Cloetens, P., Odet, C., Laval-Jeantet, A.M., Baruchel, J. & Spanne, P. (1999). A synchrotron radiation microtomography system for the analysis of trabecular bone samples. Med Phys 26, 21942204.CrossRefGoogle ScholarPubMed
Salvat, F. (2003). Optical-model potential for electron and positron elastic scattering by atoms. Phys Rev A 68, 012708-1–17.CrossRefGoogle Scholar
Salvat, F., Jablonski, A. & Powell, C.J. (2005). ELSEPA Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules. Comput Phys Commun 165, 157190.CrossRefGoogle Scholar
Sarkar, S., Mitlak, B., Wong, M., Stock, J., Black, D. & Harper, K. (2002). Relationships between bone mineral density and incident vertebral fracture risk with raloxifene therapy. J Bone Miner Res 17, 110.CrossRefGoogle ScholarPubMed
Sornay-Rendu, E., Munoz, F., Delmas, P. & Chapurlat, R. (2007). The FRAX tool in french women: How well does it describe the real incidence of fracture in the OFELY cohort? J Bone Miner Res 25, 21012107.CrossRefGoogle Scholar
Tanuma, S., Powell, C.J. & Penn, D.R. (1994). Calculations of electron inelastic mean free paths. V. data for 14 organic compounds over the 50–2000 eV range. Surf Interface Anal 21, 165176.CrossRefGoogle Scholar
Vajda, E.G., Skedros, J.G. & Bloebaum, R.D. (1998). Errors in quantitative backscattered electron analysis of bone standardized by energy-dispersive X-ray spectrometry. Scanning 20, 527535.CrossRefGoogle ScholarPubMed
Varga, D., Tökési, K., Berényi, Z., Tóth, J., Körvér, L., Gergely, G. & Sulyok, A. (2001). Energy shift and broadening of the spectra of electrons backscattered elastically from solid surfaces. Surf Interface Anal 31, 10191026.CrossRefGoogle Scholar
Varga, D., Tokési, K., Berényi, Z., Tóth, J. & Kövér, L. (2006). Observation of the hydrogen peak in the spectra of electrons backscattered from polyethylene. Surf Interface Anal 38, 544547.CrossRefGoogle Scholar
Vos, M. (2001). Observing atom motion by electron-atom Compton scattering. Phys Rev A 65, 12703-1–5.CrossRefGoogle Scholar
Vos, M. (2002). Detection of hydrogen by electron Rutherford backscattering. Ultramicroscopy 92, 143149.CrossRefGoogle ScholarPubMed
Vos, M., Moreh, R. & Tökési, K. (2011). The use of electron scattering for studying atomic momentum distributions: The case of graphite and diamond. J Chem Phys 135, 024504-1–7.CrossRefGoogle ScholarPubMed
Vos, M. & Went, M.R. (2007). Experimental confirmation of the EPES sampling depth paradox for overlayer/substrate systems. Surf Sci 601, 15361543.CrossRefGoogle Scholar
Warren, M., Kravchenko, A.F.I., Dunnam, F., Rinsvelt, H.V. & Maples, W. (2002). Elemental analysis of bone: Proton-induced X-ray emission testing in forensic cases. Forensic Sci Int 125, 3741.CrossRefGoogle ScholarPubMed
Went, M. & Vos, M. (2007). Investigation of binary compounds using electron Rutherford back scattering. Appl Phys Lett 90, 072104-1–3.CrossRefGoogle Scholar
Went, M. & Vos, M. (2008). Rutherford backscattering using electrons as projectiles: Underlying principles and possible applications. Nucl Instrum Methods Phys Res B 266, 9981011.CrossRefGoogle Scholar
Winkelmann, A. & Vos, M. (2011). Site-specific recoil diffraction of backscattered electrons in crystals. Phys Rev Lett 106, 085503-1–4.CrossRefGoogle ScholarPubMed
Wu, Y., Ackerman, J.L., Kim, H.-M., Rey, C., Barroug, A. & Glimcher, M.J. (2002). Nuclear magnetic resonance spin-spin relaxation of the crystals of bone, dental enamel, and synthetic hydroxyapatites. J Bone Miner Res 17, 472480.CrossRefGoogle ScholarPubMed
Yubero, F., Rico, V.J., Espinos, J.P., Cotrino, J. & Gonzalez-Elipe, A.R. (2005). Quantification of the H content in diamondlike carbon and polymeric thin films by reflection electron energy loss spectroscopy. Appl Phys Lett 87, 084101-1–3.CrossRefGoogle Scholar
Yubero, F. & Tökèsi, K. (2009). Identification of hydrogen and deuterium at the surface of water ice by reflection electron energy loss spectroscopy. Appl Phys Lett 95, 084101-1–3.CrossRefGoogle Scholar
Zaichick, V. & Tzaphlidou, M. (2002). Determination of calcium, phosphorus and the calcium/phosphorus ratio in cortical bone from the human femoral neck by neutron activation analysis. Appl Radiat Isot 56, 781786.CrossRefGoogle ScholarPubMed
Zhang, Y., Li, D., Wang, Y., Zhuang, G., Cheng, F., Zhang, G., Wang, Z. & Xia, J. (2002). Investigation of elemental distribution in iliac crests of female New Zealand rabbits using NAA. Biol Trace Elem Res 86, 6572.CrossRefGoogle ScholarPubMed
Zhao, Y., Wu, Y., Kong, C., Wexler, D., Vos, M., Went, M. & Dou, S.X. (2007). Phase evolution in PLD MgB2 films during the in situ annealing process. Supercond Sci Technol 20, S467S471.CrossRefGoogle Scholar