Published online by Cambridge University Press: 30 March 2010
Deposition of calcium carbonate from groundwater was examined on a moss, Didymodon tophaceus, from a Niagara Escarpment waterfall. A spectrophotometer on a polarizing microscope was used for interferometry. A second-order blue interference with an interference minimum around 620 nm was found when moss cell spaces were fully calcified. Filled cell spaces were often surrounded by empty cell spaces. Complete calcification of whole leaflets resulted in progressively higher orders of interference colors and a positive shift in interference minima. Calcified leaflets finally became cemented together, but each retained a weak extinction when rotated. Small calcareous spherulites (mean diameter 15.7 ± 2.1 μm) were found between leaflets. Spherulites exhibited first-order white interference with a Maltese cross that rotated when the polarizer and analyzer were rotated in tandem. A Nikitin-Berek compensator was tilted at 5.5° to give an interference minimum at 600 nm in the optical axis. Quadrants of spherulites with radii more or less in line with the tilting axis of the compensator had lower (P < 0.001) interference minima (535 ± 27 nm) than quadrants with radii more or less perpendicular to the compensator (659 ± 15 nm), thus indicating a radial internal structure. Spherulites were tentatively identified as vaterite.