Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T20:11:05.480Z Has data issue: false hasContentIssue false

Point Defect Clusters and Dislocations in FIB Irradiated Nanocrystalline Aluminum Films: An Electron Tomography and Aberration-Corrected High-Resolution ADF-STEM Study

Published online by Cambridge University Press:  27 October 2011

Hosni Idrissi*
Affiliation:
EMAT, Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
Stuart Turner
Affiliation:
EMAT, Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
Masatoshi Mitsuhara
Affiliation:
Department of Engineering Sciences for Electronics and Materials, Kyushu University, 6-1 Kasuga Koen, Kasuga, Fukuoka 816-8580, Japan
Binjie Wang
Affiliation:
EMAT, Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
Satoshi Hata
Affiliation:
Department of Engineering Sciences for Electronics and Materials, Kyushu University, 6-1 Kasuga Koen, Kasuga, Fukuoka 816-8580, Japan
Michael Coulombier
Affiliation:
Institute of Mechanics, Materials and Civil Engineering (iMMC), Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
Jean-Pierre Raskin
Affiliation:
Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
Thomas Pardoen
Affiliation:
Institute of Mechanics, Materials and Civil Engineering (iMMC), Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
Gustaaf Van Tendeloo
Affiliation:
EMAT, Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
Dominique Schryvers
Affiliation:
EMAT, Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Focused ion beam (FIB) induced damage in nanocrystalline Al thin films has been characterized using advanced transmission electron microscopy techniques. Electron tomography was used to analyze the three-dimensional distribution of point defect clusters induced by FIB milling, as well as their interaction with preexisting dislocations generated by internal stresses in the Al films. The atomic structure of interstitial Frank loops induced by irradiation, as well as the core structure of Frank dislocations, has been resolved with aberration-corrected high-resolution annular dark-field scanning TEM. The combination of both techniques constitutes a powerful tool for the study of the intrinsic structural properties of point defect clusters as well as the interaction of these defects with preexisting or deformation dislocations in irradiated bulk or nanostructured materials.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

André, N., Coulombier, M., De Longueville, V., Fabregue, D., Gets, T., Gravier, S., Pardoen, T. & Raskin, J.P. (2007). Multipurpose nanomechanical laboratory revealing the size-dependent strength and ductility of submicron metallic films. Microelectron Eng 84, 27142718.CrossRefGoogle Scholar
Barnard, J.S., Sharp, J., Tong, J.R. & Midgley, P.A. (2006). High-resolution three-dimensional imaging of dislocations. Science 313, 319.CrossRefGoogle ScholarPubMed
Batenburg, K.J., Bals, S., Sijbers, J., Kubel, C., Midgley, P.A., Hernandez, J.C., Kaiser, U., Encina, E.R., Coronado, E.A. & Van Tendeloo, G. (2009). 3D imaging of nanomaterilas by discrete tomography. Ultramicroscopy 109, 730740.CrossRefGoogle Scholar
Biermans, E., Molina, L., Batenburg, K.J., Bals, S. & Van Tendeloo, G. (2010). Measuring porosity at the nanoscale by quantitative electron tomography. Nano Lett 10, 50145019.CrossRefGoogle ScholarPubMed
Chen, J.H., Zandbergen, H.W. & Van Dyck, D. (2004). Atomic imaging in aberration-corrected high-resolution transmission electron microscopy. Ultramicroscopy 98, 8197.CrossRefGoogle ScholarPubMed
Coulombier, M., Boe, A., Brugger, C., Raskin, J.P. & Pardoen, T. (2010). Imperfection-sensitive ductility of aluminium thin films. Scripta Mater 62, 742745.CrossRefGoogle Scholar
de la Rubia, T.D., Zbib, H.M., Khraishi, T.A., Wirth, B.D., Victoria, M. & Caturla, M.J. (2000). Multiscale modelling of plastic flow localization in irradiated materials. Nature 406, 871874.CrossRefGoogle Scholar
Dimiduk, D.M., Uchic, M.D. & Parthasarathy, T.A. (2005). Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater 53, 40654077.CrossRefGoogle Scholar
Eyre, B.L., Loretto, M.H. & Smallman, R.E. (1977). Interaction and diffusion of point defects. In Vacancies '76, Smallman, R.E. & Harris, J.E. (Eds.), p. 63. London: The Metals Society.Google Scholar
Fabregue, D., Andre, N., Coulombier, M. & Raskin, J.P. (2007). Multipurpose nanomechanical laboratory: Five thousands micromachines on a wafer. Micro Nanolett 2, 1316.Google Scholar
Fish, R.L. & Hunter, C.W. (1976). Irradiation effects on the microstructure and properties of metals. Am Soc Test Mater 611, 119138.Google Scholar
Ghoniem, N.M., Singh, B.N., Sun, L.Z. & de la Rubia, T.D. (2000). Interaction and accumulation of glissile defect clusters near dislocations. J Nucl Mater 276, 166177.CrossRefGoogle Scholar
Gravier, S., Coulombier, M., Safi, A., André, N., Boé, A., Raskin, J.P. & Pardoen, T. (2009). New MEMS-based micromechanical testing laboratory—Application to aluminium, polysilicon and silicon nitride J Microelectromech Syst 18, 555565.CrossRefGoogle Scholar
Greer, J.R, Oliver, W.C. & Nix, W.D. (2005). Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater 53, 18211830.CrossRefGoogle Scholar
Haque, M.A. & Saif, M.T.A. (2001). Microscale materials testing using MEMS actuators. J Microelectromech Syst 10, 146162.CrossRefGoogle Scholar
Hemker, K.J. & Sharpe, W.N. Jr. (2007). Microscale characterization of mechanical properties. Annu Rev Mater Res 37, 93126.CrossRefGoogle Scholar
Hosemann, P., Swadener, J.G., Kiener, D., Was, G.S., Maloy, S.A. & Li, N. (2008). An exploratory study to determine applicability of nano-hardness and micro-compression measurements for yield stress estimation. J Nucl Mater 375, 135143.CrossRefGoogle Scholar
Hutchinson, C.R., Hackenberg, R.E. & Shiflet, G.J. (2003). A comparison of EDS microanalysis in FIB-prepared and electropolished thin foils. Ultramicroscopy 94, 3748.CrossRefGoogle ScholarPubMed
Kacher, J.P., Liu, G.S. & Robertson, I.M. (2011). Visualization of grain boundary/dislocation interactions using tomographic reconstructions. Scripta Mater 64, 677680.CrossRefGoogle Scholar
Kadoyoshi, T., Kaburaki, H., Shimizu, F., Kimizuka, H., Jitsukawa, S. & Li, J. (2007). Molecular dynamics study on the formation of stacking fault tetrahedra and unfaulting of Frank loops in fcc metals. Acta Mater 55, 30733080.CrossRefGoogle Scholar
Kiener, D., Motz, C., Rester, M., Jenko, M. & Dehm, G. (2007). FIB damage of Cu and possible consequences for miniaturized mechanical tests. Mater Sci Eng A 459, 262272.CrossRefGoogle Scholar
Kiener, D., Motz, C., Schöberl, T., Jenko, M. & Dehm, G. (2006). Determination of mechanical properties of copper at the micron scale. Adv Eng Mater 8, 11191125.CrossRefGoogle Scholar
Kiritani, M., Fukuta, Y., Mima, T., Iiyoshi, E., Kizuka, Y., Kojima, S. & Matsunami, N. (1994). Formation of vacancy clustered defects from cascade collisions during heavy-ion irradiation and their annihilation by freely-migrating interstitial atoms. J Nucl Mater 212, 192197.CrossRefGoogle Scholar
Kiritani, M., Satoh, Y., Kizuka, Y., Arakawa, K., Ogasawara, Y., Arai, S. & Shimomura, Y. (1999). Anomalous production of vacancy clusters and the possibility of plastic deformation of crystalline metals without dislocations. Philos Mag Lett 79, 797804.CrossRefGoogle Scholar
Larson, D.J., Foord, D.T., Petford-Long, A.K., Liew, H., Blamire, M.G., Cerezo, A. & Smith, G.D.W. (1999). Field-ion specimen preparation using focused ion-beam milling. Ultramicroscopy 79, 287293.CrossRefGoogle Scholar
Lowry, M.B., Kiener, D., LeBlanc, M.M., Chisholm, C., Florando, J.N., Morris, J.W. Jr. & Minor, A.M. (2010). Achieving the ideal strength in annealed molybdenum nanopillars. Acta Mater 58, 51605167.CrossRefGoogle Scholar
Marien, J., Plitzko, J.M., Spolenak, R., Keller, R.M. & Mayer, J. (1999). Quantitative electron spectroscopic imaging studies of microelectronic metallization layers. J Microsc 194, 7178.CrossRefGoogle ScholarPubMed
Midgley, P.A. & Weyland, M. (2003). 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413431.CrossRefGoogle ScholarPubMed
Osetsky, Y.N., Serra, A. & Priego, V. (2000). Interactions between mobile dislocation loops in Cu and α-Fe. J Nucl Mater 276, 202212.CrossRefGoogle Scholar
Raghavan, R., Boopathy, K., Ghisleni, R., Pouchon, M.A., Ramamurty, U. & Michler, J. (2010). Ion irradiation enhances the mechanical performance of metallic glasses. Scripta Mater 62, 462465.CrossRefGoogle Scholar
Robachy, J.S., Robertsonz, I.M., Wirth, B.D. & Arsenlis, A. (2003). In-situ transmission electron microscopy observations and molecular dynamics simulations of dislocation-defect interactions in ion-irradiated copper. Philos Mag 83, 955967.CrossRefGoogle Scholar
Saka, H., Noda, K., Matsumoto, K. & Imura, T. (1975). HVEM in situ observations of dislocation behavior in strongly electron-irradiated nickel. Phys Status Solidi A 31, 139149.CrossRefGoogle Scholar
Shan, Z.W., Mishra, R.K., Syed Asif, S.A., Warren, O.L. & Minor, A.M. (2008). Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat Mater 7, 115119.CrossRefGoogle ScholarPubMed
Shim, S., Bei, H., Miller, M.K., Pharr, G.M. & George, E.P. (2009). Effects of focused ion beam milling on the compressive behaviour of directionally solidified micropillars and the nanoindentation response of an electropolished surface. Acta Mater 57, 503510.CrossRefGoogle Scholar
Silcox, J. & Hirsch, P.B. (1959). Dislocation loops in neutron-irradiated copper. Philos Mag 4, 7289.CrossRefGoogle Scholar
Suzuki, M., Fujimura, A., Sato, A., Nagakawa, J., Yamamoto, N. & Shiraishi, H. (1991). In situ deformation of proton-irradiated molybdenum in a high-voltage electron microscope. Phil Mag A 64, 395411.CrossRefGoogle Scholar
Tanaka, M., Higashida, K., Kaneko, K., Hata, S. & Mitsuhara, M. (2008). Crack tip dislocations revealed by electron tomography in silicon single crystal. Scripta Mater 59, 901904.CrossRefGoogle Scholar
Tsuchiya, T., Hirata, M., Chiba, N., Udo, R., Yoshitomi, Y., Ando, T., Sato, K., Takashima, K., Higo, Y., Saotome, Y., Ogawa, H. & Ozaki, K. (2005). Cross comparison of thin-film tensile testing methods examined using singlecrystal silicon, polysilicon, nickel and titanium films. J Microelectromech Syst 14, 903913.CrossRefGoogle Scholar
Uchic, M.D., Dimiduk, D.M., Florando, J.N. & Nix, W.D. (2004). Sample dimensions influence strength and crystal plasticity. Science 305, 986989.CrossRefGoogle ScholarPubMed
Victoria, M., Baluc, N., Bailat, C., Dai, Y., Luppo, M.I., Schaublin, R. & Singh, B.N. (2000). The microstructure and associated tensile properties of irradiated fcc and bcc metals. J Nucl Mater 276, 114122.CrossRefGoogle Scholar
Zbib, H.M., de la Rubia, T.D., Rhee, M. & Hirth, J.P. (2000). 3D dislocation dynamics: Stress–strain behavior and hardening mechanisms in fcc and bcc metals. J Nucl Mater 276, 154156.CrossRefGoogle Scholar