Article contents
Partial Acceptor Photobleaching-Based Quantitative FRET Method Completely Overcoming Emission Spectral Crosstalks
Published online by Cambridge University Press: 02 October 2012
Abstract
Based on the quantitative fluorescence resonance energy transfer (FRET) method named PbFRET we reported recently, we herein developed a partial acceptor photobleaching-based quantitative FRET algorithm named B-PbFRET method. B-PbFRET overcomes not only the acceptor excitation crosstalk and donor emission spectral crosstalk but also the acceptor emission spectral crosstalk that harasses previous methods including fluorescence lifetime (FLIM), fluorescence recovery of donor after acceptor photobleaching, and acceptor sensitized emission (SE)-based methods. B-PbFRET method is implemented by simultaneously measuring the fluorescence intensity of both donor and acceptor channels at donor excitation before and after partial acceptor photobleaching, and it can directly measure the FRET efficiency (E) without any verified references. Based on the theoretical analysis of B-PbFRET, we also developed a more straightforward correction method named C-PbFRET to obtain the absolute E from the value measured by PbFRET for a given donor-acceptor pair. We validated both B-PbFRET and C-PbFRET methods by measuring the E of two linked constructs, 18AA and SCAT3 proteins, in single living cells, and our data demonstrated that both B-PbFRET and C-PbFRET methods can directly measure the absolute E of the linked constructs inside living cells under different degrees of acceptor emission spectral crosstalk.
Keywords
- Type
- Techniques and Equipment Development
- Information
- Copyright
- Copyright © Microscopy Society of America 2012
References
- 10
- Cited by