Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T06:10:21.130Z Has data issue: false hasContentIssue false

Oral Function Improves Interfacial Integrity and Sealing Ability Between Conventional Glass Ionomer Cements and Dentin

Published online by Cambridge University Press:  02 February 2017

Manuel Toledano*
Affiliation:
Faculty of Dentistry, Dental Materials Section, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Raquel Osorio
Affiliation:
Faculty of Dentistry, Dental Materials Section, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Inmaculada Cabello
Affiliation:
Faculty of Dentistry, Dental Materials Section, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Estrella Osorio
Affiliation:
Faculty of Dentistry, Dental Materials Section, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Manuel Toledano-Osorio
Affiliation:
Faculty of Dentistry, Dental Materials Section, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Fátima S. Aguilera
Affiliation:
Faculty of Dentistry, Dental Materials Section, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
*
*Corresponding author. [email protected]
Get access

Abstract

The aim of this study was to investigate if load cycling affects interfacial integrity of glass ionomer cements bonded to sound- or caries-affected dentin. A conventional glass ionomer, Ketac Bond, and a resin-modified glass ionomer (Vitrebond Plus), were applied to dentin. Half of the specimens were load cycled. The interfaces were submitted to dye-assisted confocal microscopy evaluation. The unloaded specimens of sound and carious dentin were deficiently hybridized when Ketac Bond was used. Ketac Bond samples showed an absorption layer and an adhesive layer that were scarcely affected by fluorescein penetration (nanoleakage), in sound dentin. Nevertheless, a higher degree of micropermeability was found in carious dentin. In Ketac Bond specimens, load cycling improves the sealing capability and remineralization at the cement–dentin interface as porosity and nanoleakage was reduced. In contrast, samples treated with Vitrebond Plus exhibited a Rhodamine B-labeled absorption layer with scarce nanoleakage in both sound and carious unloaded dentin. The adhesive layer was affected by dye sorption throughout the porous cement–dentin interface. Samples treated with Vitrebond Plus had significant increases in nanoleakage and cement–dye sorption after load cycling. Within the limitations of an in vitro study, it is expected that conventional glass ionomers will provide major clinical efficacy when applied to carious-affected or sound dentin.

Type
Biological Applications
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atmeh, A.R., Chong, E.Z., Richard, G., Festy, F. & Watson, T.F. (2012). Dentin-cement interfacial interaction: Calcium silicates and polyalkenoates. J Dent Res 91, 454459.CrossRefGoogle ScholarPubMed
Aykut-Yetkiner, A., Simşek, D., Eronat, C. & Ciftçioğlu, M. (2014). Comparison of the remineralisation effect of a glass ionomer cement versus a resin composite on dentin of primary teeth. Eur J Paediatr Dent 15, 119121.Google Scholar
Baig, M.S. & Fleming, G.J. (2015). Conventional glass-ionomer materials: A review of the developments in glass powder, polyacid liquid and the strategies of reinforcement. J Dent 43, 897912.Google Scholar
Bertassoni, L.E., Habelitz, S., Kinney, J.H., Marshall, S.J. & Marshall, G.W. Jr. (2009). Biomechanical perspective on the remineralization of dentin. Caries Res 43, 7077.CrossRefGoogle ScholarPubMed
Coutinho, E., Cardoso, M.V., De Munck, J., Neves, A.A., Van Landuyt, K.L., Poitevin, A., Peumans, M., Lambrechts, P. & Van Meerbeek, B. (2009). Bonding effectiveness and interfacial characterization of a nano-filled resin-modified glass-ionomer. Dent Mater 25, 13471357.Google Scholar
Coutinho, E., Yoshida, Y., Inoue, S., Fukuda, R., Snauwaert, J., Nakayama, Y., De Munck, J., Lambrechts, P., Suzuki, K. & Van Meerbeek, B. (2007). Gel phase formation at resin-modified glass-ionomer/tooth interfaces. J Dent Res 86, 656661.CrossRefGoogle ScholarPubMed
D’Alpino, P.H., Pereira, J.C., Svizero, N.R., Rueggeberg, F.A. & Pashley, D.H. (2006). Factors affecting use of fluorescent agents in identification of resin-based polymers. J Adhes Dent 8, 285292.Google ScholarPubMed
Davidson, C.L. (1994). Glass-ionomer bases under posterior composites. J Esthet Dent 6, 223226.Google Scholar
De Munck, J., Van Landuyt, K., Peumans, M., Poitevin, A., Lambrechts, P., Braem, M. & Van Meerbeek, B. (2005). A critical review of the durability of adhesion to tooth tissue: Methods and results. J Dent Res 84, 118132.CrossRefGoogle ScholarPubMed
De Oliveira, M.T., Arrais, C.A., Aranha, A.C., de Paula Eduardo, C., Miyake, K., Rueggeberg, F.A. & Giannini, M. (2010). Micromorphology of resin-dentin interfaces using one-bottle etch&rinse and self-etching adhesive systems on laser-treated dentin surfaces: A confocal laser scanning microscope analysis. Lasers Surg Med 42, 662670.CrossRefGoogle ScholarPubMed
Doozandeh, M., Shafiei, F. & Alavi, M. (2015). Microleakage of three types of glass ionomer cement restorations: Effect of CPP-ACP paste tooth pretreatment. J Dent (Shiraz) 16, 182188.Google Scholar
Grandfield, K. & Engqvist, H. (2014). Characterization of dental interfaces with electron tomography. Biointerphases 9, 29001.Google Scholar
Griffiths, B.M., Watson, T.F. & Sherriff, M. (1999). The influence of dentine bonding systems and their handling characteristics on the morphology and micropermeability of the dentine adhesive interface. J Dent 27, 6371.Google Scholar
International Organization for Standardization (2012). ISO 23317. Implants for Surgery – In Vitro Evaluation for Apatite-Forming Ability of Implant Materials. Geneva, Switzerland: International Organization for Standardization.Google Scholar
Koibuchi, H., Yasuda, N. & Nakabayashi, N. (2001). Bonding to dentin with a self-etching primer: The effect of smear layers. Dent Mater 17, 122126.Google Scholar
Liu, Y., Kim, Y.K., Dai, L., Li, N., Khan, S.O., Pashley, D.H. & Tay, F.R. (2011). Hierarchical and non-hierarchical mineralisation of collagen. Biomaterials 32, 12911300.CrossRefGoogle ScholarPubMed
McAllister, T.N. & Frangos, J.A. (1999). Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways. J Bone Miner Res 14, 930936.Google Scholar
Nicholson, J.W. (1998). Chemistry of glass-ionomer cements: A review. Biomaterials 19, 485494.CrossRefGoogle ScholarPubMed
Nikaido, T., Kunzelmann, K.H., Chen, H., Ogata, M., Harada, N., Yamaguchi, S., Cox, C.F., Hickel, R. & Tagami, J. (2002). Evaluation of thermal cycling and mechanical loading on bond strength of a self-etching primer system to dentin. Dent Mater 18, 269275.Google Scholar
Osorio, R., Toledano, M., Osorio, E., Aguilera, F.S. & Tay, F.R. (2005). Effect of load cycling and in vitro degradation on resin-dentin bonds using a self-etching primer. J Biomed Mater Res A 15, 399408.CrossRefGoogle Scholar
Osorio, R., Yamauti, M., Osorio, E., Román, J.S. & Toledano, M. (2011). Zinc-doped dentin adhesive for collagen protection at the hybrid layer. Eur J Oral Sci 119, 401410.Google Scholar
Pawley, J.B. (2006). Handbook of Biological Confocal Microscopy, 3rd ed. New York: Springer.CrossRefGoogle Scholar
Peumans, M., Kanumilli, P., De Munck, J., Van Landuyt, K., Lambrechts, P. & Van Meerbeek, B. (2005). Clinical effectiveness of contemporary adhesives: A systematic review of current clinical trials. Dent Mater 21, 864881.CrossRefGoogle ScholarPubMed
Posner, A.S., Blumenthal, N.C. & Boskey, A.L. (1986). Model of aluminum-induced osteomalacia: Inhibition of apatite formation and growth. Kidney Int 18, S17S19.Google ScholarPubMed
Profeta, A.C., Mannocci, F., Foxton, R., Watson, T.F., Feitosa, V.P., De Carlo, B., Mongiorgi, R., Valdré, G. & Sauro, S. (2013). Experimental etch-and-rinse adhesives doped with bioactive calcium silicate-based micro-fillers to generate therapeutic resin-dentin interfaces. Dent Mater 29, 729741.Google Scholar
Rahn, B.A. & Perren, S.M. (1971). Xylenol orange, a fluorochrome useful in polychrome sequential labeling of calcifying tissues. Stain Technol 46, 125129.CrossRefGoogle ScholarPubMed
Shafiei, F., Akbarian, S. & Karim Etminan, M. (2015). Effect of adhesive pretreatments on marginal sealing of aged nano-ionomer restorations. J Dent Res Dent Clin Dent Prospects 9, 144150.CrossRefGoogle ScholarPubMed
Shimada, Y., Kondo, Y., Inokoshi, S., Tagami, J. & Antonucci, J.M. (1999). Demineralizing effect of dental cements on human dentin. Quintessence Int 30, 267273.Google ScholarPubMed
Sidhu, S.K., Pilecki, P., Cheng, P.C. & Watson, T.F. (2002). The morphology and stability of resin-modified glass-ionomer adhesive at the dentin/resin-based composite interface. Am J Dent 15, 129136.Google ScholarPubMed
Sidhu, S.K. & Watson, T.F. (1995). Resin-modified glass-ionomer materials. Part 1: Properties. Dent Update 22, 429432.Google ScholarPubMed
Sidhu, S.K. & Watson, T.F. (1998). Interfacial characteristics of resin-modified glass-ionomer materials: A study on fluid permeability using confocal fluorescence microscopy. J Dent Res 77, 17491759.Google Scholar
Tay, F.R. & Pashley, D.H. (2008). Guided tissue remineralisation of partially demineralised human dentine. Biomaterials 29, 11271137.Google Scholar
Tay, F.R., Sidhu, S.K., Watson, T.F. & Pashley, D.H. (2004). Water-dependent interfacial transition zone in resin-modified glass-ionomer cement/dentin interfaces. J Dent Res 83, 644649.CrossRefGoogle ScholarPubMed
Toledano, M., Aguilera, F.S., Sauro, S., Cabello, I., Osorio, E. & Osorio, R. (2014 a). Load cycling enhances bioactivity at the resin-dentin interface. Dent Mater 30, e169e188.CrossRefGoogle ScholarPubMed
Toledano, M., Aguilera, F.S., Yamauti, M., Ruiz-Requena, M.E. & Osorio, R. (2013 a). In vitro load-induced dentin collagen-stabilization against MMPs degradation. J Mech Behav Biomed Mater 27, 1018.Google Scholar
Toledano, M., Cabello, I., Aguilera, F.S., Osorio, E., Toledano-Osorio, M. & Osorio, R. (2015). Improved sealing and remineralization at the resin-dentin interface after phosphoric acid etching and load cycling. Microsc Microanal 21, 15301548.CrossRefGoogle ScholarPubMed
Toledano, M., Osorio, E., Aguilera, F.S., Sauro, S., Cabello, I. & Osorio, R. (2014 b). In vitro mechanical stimulation promoted remineralization at the resin/dentin interface. J Mech Behav Biomed Mater 30, 6174.Google Scholar
Toledano, M., Osorio, R., Albaladejo, A., Aguilera, F.S., Tay, F.R. & Ferrari, M. (2006). Effect of cyclic loading on the microtensile bond strengths of total-etch and self-etch adhesives. Oper Dent 31, 2532.CrossRefGoogle ScholarPubMed
Toledano, M., Osorio, R., Osorio, E., Fuentes, V., Prati, C. & Garcia-Godoy, F. (2003). Sorption and solubility of resin-based restorative dental materials. J Dent 31, 4350.CrossRefGoogle ScholarPubMed
Toledano, M., Sauro, S., Cabello, I., Watson, T. & Osorio, R. (2013 b). A Zn-doped etch-and-rinse adhesive may improve the mechanical properties and the integrity at the bonded-dentin interface. Dent Mater 29, e142e152.Google Scholar
Wang, Y. & Spencer, P. (2003). Hybridization efficiency of the adhesive/dentin interface with wet bonding. J Dent Res 82, 141145.Google Scholar
Wang, Y., Spencer, P. & Walker, M.P. (2007). Chemical profile of adhesive/caries-affected dentin interfaces using Raman microspectroscopy. J Biomed Mater Res A 81, 279286.CrossRefGoogle ScholarPubMed
Watson, T.F., Atmeh, A.R., Sajini, S., Cook, R.J. & Festy, F. (2014). Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: Biophotonics-based interfacial analyses in health and disease. Dent Mater 30, 5061.Google Scholar
Zavgorodniy, A.V., Rohanizadeh, R., Bulcock, S. & Swain, M.V. (2008). Ultrastructural observations and growth of occluding crystals in carious dentine. Acta Biomater 4, 14271439.Google Scholar