Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-02T23:35:35.807Z Has data issue: false hasContentIssue false

On-Column 2p Bound State with Topological Charge ±1 Excited by an Atomic-Size Vortex Beam in an Aberration-Corrected Scanning Transmission Electron Microscope

Published online by Cambridge University Press:  26 July 2012

Huolin L. Xin*
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Haimei Zheng
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Atomic-size vortex beams have great potential in probing the magnetic moment of materials at atomic scales. However, the limited depth of field of vortex beams constrains the probing depth in which the helical phase front is preserved. On the other hand, electron channeling in crystals can counteract beam divergence and extend the vortex beam without disrupting its topological charge. Specifically, in this article, we report that atomic vortex beams with topological charge ±1 can be coupled to the 2p columnar bound states and propagate for more than 50 nm without being dispersed and losing its helical phase front. We give numerical solutions to the 2p columnar orbitals and tabulate the characteristic size of the 2p states of two typical elements, Co and Dy, for various incident beam energies and various atomic densities. The tabulated numbers allow estimates of the optimal convergence angle for maximal coupling to 2p columnar orbital. We have also developed analytic formulae for beam energy, convergence angle, and hologram-dependent scaling for various characteristic sizes. These length scales are useful for the design of pitch-fork apertures and operations of microscopes in the vortex-beam imaging mode.

Type
Special Section: Aberration-Corrected Electron Microscopy
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, L., Beijersbergen, M., Spreeuw, R. & Woerdman, J. (1992). Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 45, 81858189.CrossRefGoogle ScholarPubMed
Allen, L.J., Findlay, S.D., Oxley, M.P. & Rossouw, C.J. (2003). Lattice-resolution contrast from a focused coherent electron probe. Part I. Ultramicroscopy 96, 4763.CrossRefGoogle ScholarPubMed
Anstis, G.R., Cai, D.Q. & Cockayne, D.J.H. (2003). Limitations on the s-state approach to the interpretation of sub-angstrom resolution electron microscope images and microanalysis. Ultramicroscopy 94, 309327.CrossRefGoogle Scholar
Basistiy, I.V., Soskin, M.S. & Vasnetsov, M.V. (1995). Optical wavefront dislocations and their properties. Opt Comm 119, 604612.CrossRefGoogle Scholar
Bazhenov, V.Y., Vasnetsov, M.V. & Soskin, M.S. (1990). Laser beams with screw dislocations in their wavefronts. JETP Lett 52, 429431.Google Scholar
Beirjersbergen, M.W., Coerwinkel, R.P.C., Kristensen, M. & Woerdman, J.P. (1994). Helical-wavefront laser beams produced with a spiral phaseplate. Opt Comm 112, 321327.CrossRefGoogle Scholar
Berry, M.V. & Ozoriode, A.M. (1973). Semiclassical approximation of radial equation with 2-dimensional potentials. J Phys A-Math Gen 6, 14511460.Google Scholar
Bethe, H. (1928). Theory on the diffraction of electrons in crystals. Ann Phys 87, 55129.CrossRefGoogle Scholar
Bliokh, K., Bliokh, Y., Savel'ev, S. & Nori, F. (2007). Semiclassical dynamics of electron wave packet states with phase vortices. Phys Rev Lett 99, 190404. CrossRefGoogle ScholarPubMed
Bliokh, K.Y., Dennis, M.R. & Nori, F. (2011). Relativistic electron vortex beams: Angular momentum and spin-orbit interaction. Phys Rev Lett 107, 174802. CrossRefGoogle ScholarPubMed
Brand, G.F. (1999). Phase singularities in beams. Am J Phys 67, 55.CrossRefGoogle Scholar
Chen, J.H. & Van Dyck, D. (1997). Accurate multislice theory for elastic electron scattering in transmission electron microscopy. Ultramicroscopy 70, 2944.CrossRefGoogle Scholar
Cowan, R.D. (1981). The Theory of Atomic Structure and Spectra. Berkeley, CA: University of California Press.CrossRefGoogle Scholar
Cowley, J.M. & Moodie, A. (1957). The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr 10, 609619.CrossRefGoogle Scholar
Curtis, J.E., Koss, B.A. & Grier, D.G. (2002). Dynamic holographic optical tweezers. Opt Comm 207, 169175.CrossRefGoogle Scholar
Fujiwara, K. (1961). Relativistic dynamical theory of electron diffraction. J Phys Soc Jpn 16, 22262238.CrossRefGoogle Scholar
Geuens, P. & Van Dyck, D. (2002). The S-state model: A work horse for HRTEM. Ultramicroscopy 93, 179198.CrossRefGoogle Scholar
Gratias, D. & Portier, R. (1983). Time-like perturbation method in high-energy electron diffraction. Acta Crystallogr A 39, 576584.CrossRefGoogle Scholar
Grier, D.G. (2003). A revolution in optical manipulation. Nature 424, 910.CrossRefGoogle ScholarPubMed
Hashimoto, H. (1964). Energy dependence of extinction distance and transmissive power for electron waves in crystals. J Appl Phys 35, 277.CrossRefGoogle Scholar
He, H., Friese, M.E.J., Heckenberg, N.R. & Rubinsztein-Dunlop, H. (1995). Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys Rev Lett 75, 826829.CrossRefGoogle ScholarPubMed
Heckenberg, N.R., McDuff, R., Smith, C.P. & White, A.G. (1992). Generation of optical phase singularities by computer-generated holograms. Opt Lett 17, 221223.CrossRefGoogle ScholarPubMed
Henderson, R. (1995). The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q Rev Biophys 28, 171193.CrossRefGoogle ScholarPubMed
Herring, R.A. (2011). A new twist for electron beams. Science 331, 155.CrossRefGoogle ScholarPubMed
Hillyard, S., Loane, R.F. & Silcox, J. (1993). Annular dark-field imaging: Resolution and thickness effects. Ultramicroscopy 49, 1425.CrossRefGoogle Scholar
Hillyard, S. & Silcox, J. (1993). Thickness effects in ADF STEM zone-axis images. Ultramicroscopy 52, 325334.CrossRefGoogle Scholar
Hirsch, P.B., Howie, A., Nicholson, R.B., Pashley, D.W. & Whelan, M. (1965). Electron Microscopy of Thin Crystals. London: Butterworths.Google Scholar
Hovden, R., Xin, H.L. & Muller, D.A. (2010). Determining resolution in an abberration-corrected era: Why your probe is larger than you thought. Microsc Microanal 16, 152153.CrossRefGoogle Scholar
Humphreys, C. (1979). The scattering of fast electrons by crystals. Rep Prog Phys 42, 18251887.CrossRefGoogle Scholar
Idrobo, J.C. & Pennycook, S.J. (2011). Vortex beams for atomic resolution dichroism. J Elec Microsc 60, 295300.Google ScholarPubMed
Intaraprasonk, V., Xin, H.L. & Muller, D.A. (2008). Analytic derivation of optimal imaging conditions for incoherent imaging in aberration-corrected electron microscopes. Ultramicroscopy 108, 14541466.CrossRefGoogle ScholarPubMed
Kapale, K.T. & Dowling, J.P. (2005). Vortex phase qubit: Generating arbitrary, counterrotating, coherent superpositions in bose-einstein condensates via optical angular momentum beams. Phys Rev Lett 95, 173601. CrossRefGoogle ScholarPubMed
Kirkland, E.J. (2010). Advanced Computing in Electron Microscopy. New York: Springer Verlag.CrossRefGoogle Scholar
Kirkland, E.J., Loane, R.F. & Silcox, J. (1987). Simulation of annular dark field stem images using a modified multislice method. Ultramicroscopy 23, 7796.CrossRefGoogle Scholar
Koonin, S.E. & Meredith, D.C. (1998). Computational Physics: Fortran Version. Boulder, CO: Westview Press.Google Scholar
Loane, R.F., Kirkland, E.J. & Silcox, J. (1988). Visibility of single heavy atoms on thin crystalline silicon in simulated annular dark field. Acta Crystallogr A 44, 912927.Google Scholar
McMorran, B., Agrawal, A., Anderson, I.M., Herzing, A.A., Lezec, H., McClelland, J.J. & Unguris, J. (2011a). Electron Laguerre-Gaussian beams. Conference paper. Quantum Electronics and Laser Science Conference, Baltimore, MD, May 1, 2011. CrossRefGoogle Scholar
McMorran, B.J., Agrawal, A., Anderson, I.M., Herzing, A.A., Lezec, H.J., McClelland, J.J. & Unguris, J. (2011b). Electron vortex beams with high quanta of orbital angular momentum. Science 331, 192195.CrossRefGoogle ScholarPubMed
Mott, N. & Massey, H. (1965). The Theory of Atomic Collisions. Oxford, UK: Clarendon Press.Google Scholar
Nellist, P.D. & Pennycook, S.J. (1999). Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy 78, 111124.CrossRefGoogle Scholar
Nye, J.F. & Berry, M.V. (1974). Dislocations in wave trains. P Roy Soc A-Math Phy 336, 165190.Google Scholar
O'Neil, A., MacVicar, I., Allen, L. & Padgett, M. (2002). Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys Rev Lett 88, 053601. CrossRefGoogle ScholarPubMed
Padgett, M., Courtial, J. & Allen, L. (2004). Light's orbital angular momentum. Phys Today 57(5), 3540.CrossRefGoogle Scholar
Pennycook, S.J. & Jesson, D.E. (1990). High-resolution incoherent imaging of crystals. Phys Rev Lett 64, 938941.CrossRefGoogle ScholarPubMed
Rother, A. & Scheerschmidt, K. (2009). Relativistic effects in elastic scattering of electrons in TEM. Ultramicroscopy 109, 154160.CrossRefGoogle ScholarPubMed
Schattschneider, P. (2008). Exchange of angular momentum in EMCD experiments. Ultramicroscopy 109, 9195.CrossRefGoogle ScholarPubMed
Schattschneider, P., Stöger-Pollach, M., Löffler, S., Steiger-Thirsfeld, A., Hell, J. & Verbeeck, J. (2012). Sub-nanometer free electrons with topological charge. Ultramicroscopy 115, 2125.CrossRefGoogle ScholarPubMed
Schattschneider, P. & Verbeeck, J. (2011). Theory of free electron vortices. Ultramicroscopy 111, 14611468.CrossRefGoogle ScholarPubMed
Uchida, M. & Tonomura, A. (2010). Generation of electron beams carrying orbital angular momentum. Nature 464, 737739.CrossRefGoogle ScholarPubMed
Van Aert, S., Geuens, P., Van Dyck, D., Kisielowski, C. & Jinschek, J. (2007). Electron channelling based crystallography. Ultramicroscopy 107, 551558.CrossRefGoogle ScholarPubMed
Van Dyck, D. & Coene, W. (1984). The real space method for dynamical electron diffraction calculations in high resolution electron microscopy: I. Principles of the method. Ultramicroscopy 15, 2940.CrossRefGoogle Scholar
Van Dyck, D. & deBeeck, M.O. (1996). A simple intuitive theory for electron diffraction. Ultramicroscopy 64, 99107.CrossRefGoogle Scholar
Verbeeck, J., Schattschneider, P., Lazar, S., Stoger-Pollach, M., Loffler, S., Steiger-Thirsfeld, A. & Van Tendeloo, G. (2011a). Atomic scale electron vortices for nanoresearch. Appl Phys Lett 99, 203109203111.CrossRefGoogle Scholar
Verbeeck, J., Tian, H. & Béché, A. (2011b). A new way of producing electron vortex probes for STEM. Ultramicroscopy 113, 8387.CrossRefGoogle Scholar
Verbeeck, J., Tian, H. & Schattschneider, P. (2010). Production and application of electron vortex beams. Nature 467, 301304.CrossRefGoogle ScholarPubMed
Wu, T.Y. & Ohmura, T. (1962). Quantum Theory of Scattering. New York: Prentice-Hall.Google Scholar
Xin, H.L. & Muller, D.A. (2009). Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM. J Elec Microsc 58, 157165.CrossRefGoogle ScholarPubMed
Xin, H.L. & Muller, D.A. (2010a). Electron microscopy: A new spin on electron beams. Nature Nanotechnol 5, 764765.CrossRefGoogle ScholarPubMed
Xin, H.L. & Muller, D.A. (2010b). Three-dimensional imaging in aberration-corrected electron microscopes. Microsc Microanal 16, 445455.CrossRefGoogle ScholarPubMed