Published online by Cambridge University Press: 18 January 2013
Environmental scanning electron microscopy has been extensively used for studying the wetting properties of different materials. For some types of investigation, however, the traditional ways of conducting in situ dynamic wetting experiments do not offer sufficient control over the wetting process. Here, we present a novel method for controlled wetting of materials in the environmental scanning electron microscope (ESEM). It offers improved control of the point of interaction between the water and the specimen and renders it more accessible for imaging. It also enables the study of water transport through a material by direct imaging. The method is based on the use of a piezo-driven nanomanipulator to bring a specimen in contact with a water reservoir in the ESEM chamber. The water reservoir is established by local condensation on a Peltier-cooled surface. A fixture was designed to make the experimental setup compatible with the standard Peltier cooling stage of the microscope. The developed technique was successfully applied to individual cellulose fibers, and the absorption and transport of water by individual cellulose fibers were imaged.
Present address: Epsilon AB, SE-41756, Gothenburg, Sweden