Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T05:57:38.388Z Has data issue: false hasContentIssue false

Nonscanning Three-Dimensional Optical Microscope Based on the Reflectivity-Height Transformation for Biological Measurements

Published online by Cambridge University Press:  04 March 2013

Ming-Hung Chiu*
Affiliation:
Department of Electro-Optical Engineering, National Formosa University, No. 64, Wunhua Road, Huwei, Yunlin, 632, Taiwan
Chen-Tai Tan
Affiliation:
Department of Electro-Optical Engineering, National Formosa University, No. 64, Wunhua Road, Huwei, Yunlin, 632, Taiwan
Tsuan-Shih Lee
Affiliation:
Department of Electro-Optical Engineering, National Formosa University, No. 64, Wunhua Road, Huwei, Yunlin, 632, Taiwan
Jain-Cheng Lee
Affiliation:
Department of Electro-Optical Engineering, National Formosa University, No. 64, Wunhua Road, Huwei, Yunlin, 632, Taiwan
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

We propose a nonscanning three-dimensional (3D) optical microscope based on reflectivity-height transformation in applications of biological and transparent plate measurements. The reflectivity of a prism can be transformed to the surface height of the specimen based on geometrical optics and the principle of internal reflection. Thus, the pattern of reflectivity is representative of the surface profile. Using charge-coupled device cameras to obtain the two-dimensional image patterns and combining with its reflectivity pattern, the 3D profile can be generated. The lateral resolution is determined by the diffraction limit, and the vertical resolution is better than several nanometers according to the incident angle and polarization used.

Type
Software, Techniques, and Equipment Development
Copyright
Copyright © Microscopy Society of America 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Axelrod, D. (1989). Total internal reflection fluorescence microscopy. In Methods in Cell Biology, Taylor, D. & Wang, W. (Eds.), vol. 30, chap. 9, pp. 245270. San Diego, CA: Academic Press.Google Scholar
Axelrod, D. (2001). Total internal reflection fluorescence microscopy in cell biology. Traffic 2, 764774.Google Scholar
Chiu, M.H., Lai, C.F., Ten, C.T. & Lin, Y.Z. (2011). Lateral and axial resolutions of an angle deviation microscope for different numerical apertures: Experimental results. Opt Eng 50(3), 033204-1–7.Google Scholar
Chiu, M.H., Shih, B.Y. & Lai, C.W. (2007). Laser-scanning angle deviation microscopy. Appl Phys Lett 90, 021111-1–3.CrossRefGoogle Scholar
Dubois, A., Moreau, J. & Boccara, C. (2008). Spectroscopic ultrahigh-resolution full-field optical coherence microscopy. Opt Exp 16(21), 1708217091.Google Scholar
Dubois, A., Vabre, L., Boccara, A.C. & Beaurepaire, E. (2002). High-resolution full-field optical coherence tomography with a Linnik microscope. Appl Opt 41, 805812.CrossRefGoogle ScholarPubMed
Goldberg, D.J. & Burmeister, D.W. (1986). Stages in axon formation: Observation of growth of aplysia axons in culture using video-enhanced contrast-differential interference contrast microscopy. J Cell Biol 103, 19211931.Google Scholar
Hecht, E. (1988). Geometrical optics. In Optics, 3rd ed., chap. 5, pp. 189191. Boston, MA: Addison Wesley Longman, Inc. Google Scholar
Huang, P.S., Kiyono, S. & Kamada, O. (1992). Angle measurement based on the internal-reflection effect: A new method. Appl Opt 31, 60476055.Google Scholar
Iizuka, K. (2002). In free space and special media. In Elements of Photonics, Saleh, B.E.A. (Series Ed.), vol. I, pp. 201227. New York: John Wiley & Sons.Google Scholar
Kohno, T., Ozawa, N., Miyamoto, K. & Musha, T. (1988). High precision optical surface sensor. Appl Opt 27, 103108.CrossRefGoogle ScholarPubMed
Masters, B.R. (2005). Confocal Microscopy and Multiphoton Excitation Microscopy. Bellingham, WA: SPIE Press.Google Scholar
Matsumoto, T., Kitagawa, Y., Adachi, M. & Minemoto, T. (1991). Profile measuring method based on reflection characteristics at a critical angle in a right-angle prism. Appl Opt 30, 32053209.Google Scholar
Murphy, D. (2001). Differential Interference Contrast (DIC) Microscopy and Modulation Contrast Microscopy, Fundamentals of Light Microscopy and Digital Imaging, pp. 153168. New York: Wiley-Liss.Google Scholar
Roy, D. & Knigh, A.E. (2010). Scanning near-field optical microscopy and related techniques. In Encyclopedia of Spectroscopy and Spectrometry, 2nd ed., Lindon, J., Tranter, G. & Koppenaal, D. (Eds.), pp. 24572463. San Diego, CA: Elsevier Ltd. Academic Press.CrossRefGoogle Scholar
Tan, C.T., Chan, Y.S., Chen, J.A., Liao, T.C. & Chiu, M.H. (2011a). Non-scanning, non-interferometric, three-dimensional optical profilometer with nanometer resolution. Chin Opt Lett 9(10), 101202-1–3.Google Scholar
Tan, C.T., Chan, Y.S., Lin, Z.C. & Chiu, M.H. (2011b). Angle-deviation optical profilometer. Chin Opt Lett 9(1), 011201-1–3.Google Scholar
Yazdanfar, S., Laiho, L.H. & So, P.T.C. (2004). Interferometric second harmonic generation microscopy. Opt Exp 12, 27392745.Google Scholar
Yoshiki, K., Ryosuke, K., Hashimoto, M., Hashimoto, N. & Araki, T. (2007). Second-harmonic-generation microscope using eight-segment polarization-mode converter to observe three-dimensional molecular orientation. Opt Lett 32, 16801682.Google Scholar