Published online by Cambridge University Press: 10 October 2019
Mineral particles in bone are interlaced with collagen fibrils, hindering the investigation of bioapatite crystallites (BAp). This study utilized a special whale rostrum (the most highly mineralized bone ever recorded) to measure the crystallites of bone BAp via long-term dissolution in water. The BAp in the rostrum has a low solubility (6.7 ppm Ca and 3.8 ppm P after 150 days dissolution) as well as in normal bones, which leads to its Ksp value of ~10−53. Atomic force microscopy results show tightly compacted mineral crystallites and confirm the low amount of collagen in the rostrum. Additionally, the mineral crystallites demonstrate irregular plate-like shapes with variable sizes. The small crystallites (~11 × 24 nm) are easily detached from BAp prisms, compared with the large crystallites (~50 nm). Moreover, various orientations of crystallites are observed on the edge of the prisms, which suggest a random direction of mineral growth. Furthermore, these plate-like crystallites prefer to be stacked layer by layer under weak regulation from collagen. The morphology of rostrum after dissolution provides new insights into the actual morphology of BAp crystallites.